Absorption Laws (Logic)/Disjunction Absorbs Conjunction
Jump to navigation
Jump to search
Theorem
- $p \lor \paren {p \land q} \dashv \vdash p$
This can be expressed as two separate theorems:
Forward Implication
- $p \lor \paren {p \land q} \vdash p$
Reverse Implication
- $p \vdash p \lor \paren {p \land q}$
Proof by Truth Table
We apply the Method of Truth Tables.
As can be seen by inspection, the appropriate truth values match for all boolean interpretations.
$\begin{array}{|ccccc||c|} \hline p & \lor & (p & \land & q) & p \\ \hline \F & \F & \F & \F & \F & \F \\ \F & \F & \F & \F & \T & \F \\ \T & \T & \T & \F & \F & \T \\ \T & \T & \T & \T & \T & \T \\ \hline \end{array}$
$\blacksquare$
Proof 2
\(\ds p \lor \left({p \land q}\right)\) | \(=\) | \(\ds \left({p \land \top}\right) \lor \left({p \land q}\right)\) | Conjunction with Tautology | |||||||||||
\(\ds \) | \(=\) | \(\ds p \land \left({\top \lor q}\right)\) | Conjunction is Left Distributive over Disjunction | |||||||||||
\(\ds \) | \(=\) | \(\ds p \land \top\) | Disjunction with Tautology | |||||||||||
\(\ds \) | \(=\) | \(\ds p\) | Conjunction with Tautology |
$\blacksquare$
Also see
Sources
- 1965: E.J. Lemmon: Beginning Logic ... (previous) ... (next): Chapter $1$: The Propositional Calculus $1$: $5$ Further Proofs: Résumé of Rules: Theorem $32$
- 2012: M. Ben-Ari: Mathematical Logic for Computer Science (3rd ed.) ... (previous) ... (next): $\S 2.10$: Exercise $2.5$