Ackermann-Péter Function is Strictly Increasing on First Argument

From ProofWiki
Jump to navigation Jump to search

Theorem

For all $x, y \in \N$:

$\map A {x + 1, y} > \map A {x, y}$

where $A$ is the Ackermann-Péter function.


General Result

Forall $x, y, z \in \N$ such that:

$x < y$

we have:

$\map A {x, z} < \map A {y, z}$

where $A$ is the Ackermann-Péter function.


Proof

\(\ds \map A {x + 1, y}\) \(\ge\) \(\ds \map A {x, y + 1}\) Increasing Second Argument of Ackermann-Péter Function is Not Greater than Increasing First Argument
\(\ds \) \(>\) \(\ds \map A {x, y}\) Ackermann-Péter Function is Strictly Increasing on Second Argument

$\blacksquare$