Ackermann-Péter Function is not Primitive Recursive

From ProofWiki
Jump to navigation Jump to search

Theorem

The Ackermann-Péter function is not primitive recursive.


Proof

Let $A : \N^2 \to \N$ denote the Ackermann-Péter function.

It suffices to show that, for every primitive recursive $f : \N^k \to \N$, there exists some $t_f \in \N$ such that:

$\forall x_1, \dotsc, x_k \in \N: \map f {x_1, \dotsc, x_k} < \map A {t_f, \map \max {x_1, \dotsc, x_k}}$

For, if $A$ were primitive recursive, we would have:

$\map A {t_A, t_A} < \map A {t_A, \map \max {t_A, t_A}} = \map A {t_A, t_A}$

which is a contradiction.


We will proceed by induction on the definition of $f$.


Basic Primitive Recursive Functions

If $f$ is the zero function, we have:

$t_{\Zero} = 0$

as:

\(\ds \map \Zero x\) \(=\) \(\ds 0\) Definition of Zero Function
\(\ds \) \(<\) \(\ds x + 1\)
\(\ds \) \(=\) \(\ds \map A {0, x}\) Definition of Ackermann-Péter Function


If $f$ is a successor function, we have:

$t_{\Succ} = 1$

as:

\(\ds \map \Succ x\) \(=\) \(\ds x + 1\) Definition of Successor Function
\(\ds \) \(<\) \(\ds x + 2\)
\(\ds \) \(=\) \(\ds \map A {1, x}\) Ackermann-Péter Function at (1,y)


If $f$ is a projection function, we have:

$t_{\pr_j^k} = 0$

as:

\(\ds \map {\pr_j^k} {x_1, \dotsc, x_k}\) \(=\) \(\ds x_j\) Definition of Projection Function
\(\ds \) \(\le\) \(\ds \map \max {x_1, \dotsc, x_k}\) Max Operation Yields Supremum of Operands
\(\ds \) \(<\) \(\ds \map \max {x_1, \dotsc, x_k} + 1\)
\(\ds \) \(=\) \(\ds \map A {0, \map \max {x_1, \dotsc, x_k} }\) Definition of Ackermann-Péter Function

$\Box$


Substitution

Suppose $f : \N^k \to \N$ is obtained by substitution from:

$g_1, \dotsc, g_m : \N^k \to \N$
$h : \N^m \to \N$

as:

$\map f {x_1, \dotsc, x_k} = \map h {\map {g_1} {x_1, \dotsc, x_k}, \dotsc, \map {g_m} {x_1, \dotsc, x_k}}$

Let $t_g = \map \max {t_{g_1}, \dotsc, t_{g_m}}$

Then, we have:

$t_f = t_h + t_g + 2$


For every $1 \le j \le m$:

\(\ds \map {g_j} {x_1, \dotsc, x_k}\) \(<\) \(\ds \map A {t_{g_j}, \map \max {x_1, \dotsc, x_k} }\) Inductive hypothesis on $t_{g_j}$
\(\ds \) \(\le\) \(\ds \map A {t_g, \map \max {x_1, \dotsc, x_k} }\) Ackermann-Péter Function is Strictly Increasing on First Argument


Thus:

\(\ds \map f {x_1, \dotsc, x_k}\) \(=\) \(\ds \map h {\map {g_1} {x_1, \dotsc, x_k}, \dotsc, \map {g_m} {x_1, \dotsc, x_k} }\)
\(\ds \) \(<\) \(\ds \map A {t_h, \map \max {\map {g_1} {x_1, \dotsc, x_k}, \dotsc, \map {g_m} {x_1, \dotsc, x_k} } }\) Inductive hypothesis on $t_h$
\(\ds \) \(=\) \(\ds \map A {t_h, \map {g_j} {x_1, \dotsc, x_k} }\) where $\map {g_j} {x_1, \dotsc, x_k} = \map \max {\map {g_1} {x_1, \dotsc, x_k}, \dotsc, \map {g_m} {x_1, \dotsc, x_k} }$
\(\ds \) \(<\) \(\ds \map A {t_h, \map A {t_g, \map \max {x_1, \dotsc, x_k} } }\) Ackermann-Péter Function is Strictly Increasing on Second Argument
\(\ds \) \(<\) \(\ds \map A {t_h + t_g + 2, \map \max {x_1, \dotsc, x_k} }\) Strict Upper Bound for Composition of Ackermann-Péter Functions
\(\ds \) \(=\) \(\ds \map A {t_f, \map \max {x_1, \dotsc, x_k} }\)

$\Box$


Primitive Recursion

Suppose $f : \N^{k + 1} \to \N$ is obtained by primitive recursion from:

$g : \N^k \to \N$
$h : \N^{k + 2} \to \N$

as:

$\map f {x_1, \dotsc, x_k, z} = \begin{cases}

\map g {x_1, \dotsc, x_k} & : z = 0 \\ \map h {x_1, \dotsc, x_k, z - 1, \map f {x_1, \dotsc, x_k, z - 1}} & : z > 0 \end{cases}$


Then, we have:

$t_f = \map \max {t_g, t_h} + 5$

It suffices to show that, for all $x_1, \dotsc, x_k, z \in \N$:

$\map f {x_1, \dotsc, x_k, z} < \map A {\map \max {t_g, t_h} + 1, \map \max {x_1, \dotsc, x_k} + z}$

For:

\(\ds \map f {x_1, \dotsc, x_k, z}\) \(<\) \(\ds \map A {\map \max {t_g, t_h} + 1, \map \max {x_1, \dotsc, x_k} + z}\) To be shown
\(\ds \) \(\le\) \(\ds \map A {\map \max {t_g, t_h} + 1, 2 \map \max {x_1, \dotsc, x_k, z} }\) Ackermann-Péter Function is Strictly Increasing on Second Argument
\(\ds \) \(<\) \(\ds \map A {\map \max {t_g, t_h} + 1, 2 \map \max {x_1, \dotsc, x_k, z} + 3}\) Ackermann-Péter Function is Strictly Increasing on Second Argument
\(\ds \) \(=\) \(\ds \map A {\map \max {t_g, t_h} + 1, \map A {2, \map \max {x_1, \dotsc, x_k, z} } }\) Ackermann-Péter Function at (2,y)
\(\ds \) \(<\) \(\ds \map A {\map \max {t_g, t_h + 5, \map \max {x_1, \dotsc, x_k, z} } }\) Strict Upper Bound for Composition of Ackermann-Péter Functions
\(\ds \) \(=\) \(\ds \map A {t_f, \map \max {x_1, \dotsc, x_k, z} }\)


In order to prove that statement, we will perform induction on $z$.

Basis for the Induction

First, suppose $z = 0$.

Then:

\(\ds \map f {x_1, \dotsc, x_k, 0}\) \(=\) \(\ds \map g {x_1, \dotsc, x_k}\)
\(\ds \) \(<\) \(\ds \map A {t_g, \map \max {x_1, \dotsc, x_k} }\)
\(\ds \) \(<\) \(\ds \map A {\map \max {t_g, t_h} + 1, \map \max {x_1, \dotsc, x_k} + 0}\) Ackermann-Péter Function is Strictly Increasing on First Argument

satisfying the basis for the induction.

$\Box$


Induction Hypothesis

The induction hypothesis is:

$\map f {x_1, \dotsc, x_k, z} < \map A {\map \max {t_g, t_h} + 1, \map \max {x_1, \dotsc, x_k} + z}$

Assuming that, we want to show:

$\map f {x_1, \dotsc, x_k, z + 1} < \map A {\map \max {t_g, t_h} + 1, \map \max {x_1, \dotsc, x_k} + z + 1}$


Induction Step

First, we will show that:

$\map \max {x_1, \dotsc, x_k, z, \map f {x_1, \dotsc, x_k, z} } < \map A {\map \max {t_g, t_h} + 1, \map \max {x_1, \dotsc, x_k} + z}$

If the greatest among $\set {x_1, \dotsc, x_k, z, \map f {x_1, \dotsc, x_k, z} }$ is some $x_i$, then:

\(\ds x_i\) \(\le\) \(\ds \map \max {x_1, \dotsc, x_k}\) Max Operation Yields Supremum of Operands
\(\ds \) \(\le\) \(\ds \map \max {x_1, \dotsc, x_k} + z\)
\(\ds \) \(<\) \(\ds \map A {\map \max {t_g, t_h} + 1, \map \max {x_1, \dotsc, x_k} + z}\) Ackermann-Péter Function is Greater than Second Argument

If it is $z$, then:

\(\ds z\) \(\le\) \(\ds \map \max {x_1, \dotsc, x_k} + z\)
\(\ds \) \(<\) \(\ds \map A {\map \max {t_g, t_h} + 1, \map \max {x_1, \dotsc, x_k} + z}\) Ackermann-Péter Function is Greater than Second Argument

If it is $\map f {x_1, \dotsc, x_k, z}$, the statement holds by the induction hypothesis.

Thus, by Proof by Cases, the statement:

$\paren 1 \quad \map \max {x_1, \dotsc, x_k, z, \map f {x_1, \dotsc, x_k, z} } < \map A {\map \max {t_g, t_h} + 1, \map \max {x_1, \dotsc, x_k} + z}$

is true.


Now:

\(\ds \map f {x_1, \dotsc, x_k, z + 1}\) \(=\) \(\ds \map h {x_1, \dotsc, x_k, z, \map f {x_1, \dotsc, x_k, z} }\)
\(\ds \) \(<\) \(\ds \map A {t_h, \map \max {x_1, \dotsc, x_k, z, \map f {x_1, \dotsc, x_k, z} } }\)
\(\ds \) \(<\) \(\ds \map A {t_h, \map A {\map \max {t_g, t_h} + 1, \map \max {x_1, \dotsc, x_k} + z} }\) Ackermann-Péter Function is Strictly Increasing on Second Argument and $\paren 1$
\(\ds \) \(\le\) \(\ds \map A {\map \max {t_g, t_h}, \map A {\map \max {t_g, t_h} + 1, \map \max {x_1, \dotsc, x_k} + z} }\) Ackermann-Péter Function is Strictly Increasing on First Argument
\(\ds \) \(=\) \(\ds \map A {\map \max {t_g, t_h} + 1, \map \max {x_1, \dotsc, x_k} + z + 1}\) Definition of Ackermann-Péter Function

Thus, the induction step is satisfied.

$\Box$

By the Principle of Mathematical Induction, it holds that:

$\map f {x_1, \dotsc, x_k, z} < \map A {\map \max {t_g, t_h} + 1, \map \max {x_1, \dotsc, x_k} + z}$

for all $z \in \N$.

So, the case is concluded by the remarks above.

$\Box$


By definition, every primitive recursive function $f$ must be obtainable from just those operations, and so necessarily satisfy the required property.

It follows from the remarks at the start of the proof that the Ackermann-Péter function is not primitive recursive.

$\blacksquare$