# Admissible Curve in Riemannian Manifold has Unique Forward Reparametrization by Arc Length

Jump to navigation
Jump to search

## Theorem

Let $\struct {M, g}$ be a Riemannian manifold with or without boundary.

Let $I \subseteq \R$ be a real interval.

Let $\gamma : I \to M$ be an admissible Curve.

Then $\gamma$ has a unique forward reparametrization by arc length.

## Proof

This theorem requires a proof.You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by crafting such a proof.To discuss this page in more detail, feel free to use the talk page.When this work has been completed, you may remove this instance of `{{ProofWanted}}` from the code.If you would welcome a second opinion as to whether your work is correct, add a call to `{{Proofread}}` the page. |

## Sources

- 2018: John M. Lee:
*Introduction to Riemannian Manifolds*(2nd ed.) ... (previous) ... (next): $\S 2$: Riemannian Metrics. Definitions