Alexandroff Extension which is T2 Space is also T4 Space

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $T = \left({S, \tau}\right)$ be a non-empty topological space.

Let $p$ be a new element not in $S$.

Let $S^* := S \cup \left\{{p}\right\}$.

Let $T^* = \left({S^*, \tau^*}\right)$ be the Alexandroff extension on $S$.

Let $T^*$ be a $T_2$ (Hausdorff) space.


Then $T^*$ is a $T_4$ space.


Proof

We have:

Alexandroff Extension is Compact
Compact Hausdorff Space is T4.

$\blacksquare$


Sources