Alternating Group on 4 Letters/Conjugacy Classes

From ProofWiki
Jump to navigation Jump to search

Conjugacy Classes of the Alternating Group on 4 Letters

Let $A_4$ denote the Alternating Group on 4 Letters, whose Cayley table is given as:

$\begin{array}{c|cccc|cccc|cccc} \circ & e & t & u & v & a & b & c & d & p & q & r & s \\ \hline e & e & t & u & v & a & b & c & d & p & q & r & s \\ t & t & e & v & u & b & a & d & c & q & p & s & r \\ u & u & v & e & t & c & d & a & b & r & s & p & q \\ v & v & u & t & e & d & c & b & a & s & r & q & p \\ \hline a & a & c & d & b & p & r & s & q & e & u & v & t \\ b & b & d & c & a & q & s & r & p & t & v & u & e \\ c & c & a & b & d & r & p & q & s & u & e & t & v \\ d & d & b & a & c & s & q & p & r & v & t & e & u \\ \hline p & p & s & q & r & e & v & t & u & a & d & b & c \\ q & q & r & p & s & t & u & e & v & b & c & a & d \\ r & r & q & s & p & u & t & v & e & c & b & d & a \\ s & s & p & r & q & v & e & u & t & d & a & c & b \\ \end{array}$


The conjugacy classes of $A_4$ are:

\(\ds \) \(\) \(\ds \set e\)
\(\ds \) \(\) \(\ds \set {a, b, c, d}\)
\(\ds \) \(\) \(\ds \set {p, q, r, s}\)
\(\ds \) \(\) \(\ds \set {t, u, v}\)


Proof

The elements of the Alternating Group on 4 Letters can be expressed in cycle notation thus:

\(\ds e\) \(:=\) \(\ds \text { the identity mapping}\)
\(\ds t\) \(:=\) \(\ds \tuple {1 2} \tuple {3 4}\)
\(\ds u\) \(:=\) \(\ds \tuple {1 3} \tuple {2 4}\)
\(\ds v\) \(:=\) \(\ds \tuple {1 4} \tuple {2 3}\)


\(\ds a\) \(:=\) \(\ds \tuple {1 2 3}\)
\(\ds b\) \(:=\) \(\ds \tuple {1 3 4}\)
\(\ds c\) \(:=\) \(\ds \tuple {2 4 3}\)
\(\ds d\) \(:=\) \(\ds \tuple {1 4 2}\)


\(\ds p\) \(:=\) \(\ds \tuple {1 3 2}\)
\(\ds q\) \(:=\) \(\ds \tuple {2 3 4}\)
\(\ds r\) \(:=\) \(\ds \tuple {1 2 4}\)
\(\ds s\) \(:=\) \(\ds \tuple {1 4 3}\)



Sources