Antisymmetric Relation/Examples
Jump to navigation
Jump to search
Examples of Antisymmetric Relations
Ordering of Integers
The usual ordering $\le$ on the set of integers $\Z$ is antisymmetric:
- $\forall x, y \in \Z: \paren {x \le y} \land \paren {y \le x} \iff x = y$
Set Inclusion
The subset relation is antisymmetric:
- $\paren {x \subseteq y} \land \paren {y \subseteq x} \iff x = y$
where $x$ and $y$ are sets.
Partial Ordering
Let $\preccurlyeq$ be a partial ordering on a set $S$.
Then $\preccurlyeq$ is an antisymmetric relation on $S$.