Approximation/Examples/22 over 7
Jump to navigation
Jump to search
Theorem
$\dfrac {22} 7$ is a convenient approximation to $\pi$:
- $\dfrac {22} 7 = 3 \cdotp \dot 14285 \dot 7$
Proof
\(\ds \dfrac {22} 7\) | \(=\) | \(\ds 3 \cdotp \dot 14285 \dot 7\) | ||||||||||||
\(\ds \pi\) | \(\approx\) | \(\ds 3 \cdotp 14159265\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \dfrac {22} 7 - \pi\) | \(\approx\) | \(\ds 0 \cdotp 0012645\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \dfrac {\frac {22} 7 - \pi} \pi\) | \(\approx\) | \(\ds 0 \cdotp 0004025\) | |||||||||||
\(\ds \) | \(\approx\) | \(\ds 0 \cdotp 04025 \%\) |
$\blacksquare$
Sources
- 1973: G. Stephenson: Mathematical Methods for Science Students (2nd ed.) ... (previous) ... (next): Chapter $1$: Real Numbers and Functions of a Real Variable: $1.1$ Real Numbers
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): approximation
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): approximation
- 2021: Richard Earl and James Nicholson: The Concise Oxford Dictionary of Mathematics (6th ed.) ... (previous) ... (next): approximation