Arcsine as Integral

From ProofWiki
Jump to navigation Jump to search


$\ds \map \arcsin x = \int_0^x \frac {\d x} {\sqrt {1 - x^2} }$


Lemma 1

Let $\sin_A$ be the analytic sine function for real numbers.

Let $\arcsin_A$ denote the real arcsine function.


$\ds \map {\arcsin_A} x = \int_0^x \frac {\d x} {\sqrt {1 - x^2} }$


Lemma 2

Let $\sin_G$ be the geometric sine.

$\arcsin_G$ is the inverse of this function.

$\ds \map {\arcsin_G} x = \int_0^x \frac {\d x} {\sqrt {1 - x^2} }$


$\ds \map \arcsin x = \map {\arcsin_A} x = \map {\arcsin_G} x = \int_0^x \frac {\d x} {\sqrt {1 - x^2} }$


Also see