Arcsine as Integral/Lemma 1

From ProofWiki
Jump to navigation Jump to search

Lemma

Let $\sin_A$ be the analytic sine function for real numbers.

Let $\arcsin_A$ denote the real arcsine function.

Then:

$\ds \map {\arcsin_A} x = \int_0^x \frac {\d x} {\sqrt {1 - x^2} }$


Proof

For this proof only, let $\sin_A$ be the analytic sine function.


Consider:

$\ds \int_0^x \frac {\d x} {\sqrt {1 - x^2} }$

Let:

$x = \sin_A \theta \iff \theta = \map {\arcsin_A} x$


Then:

\(\ds \d x\) \(=\) \(\ds \cos_A \theta \rd \theta\) Derivative of Sine Function
\(\ds \int \frac {\d x} {\sqrt {1 - x^2} }\) \(=\) \(\ds \int \frac {\cos_A \theta \rd \theta } {\sqrt {1 - \sin_A^2 \theta} }\) Integration by Substitution
\(\ds \) \(=\) \(\ds \int \frac {\cos_A \theta \rd \theta } {\sqrt {\cos_A^2 \theta} }\) Sum of Squares of Sine and Cosine
\(\ds \) \(=\) \(\ds \int 1 \rd \theta\)
\(\ds \) \(=\) \(\ds \theta + C\)
\(\ds \) \(=\) \(\ds \map {\arcsin_A} x + C\)
\(\ds \leadsto \ \ \) \(\ds \int_0^x \frac {\d x} {\sqrt {1 - x^2} }\) \(=\) \(\ds \map {\arcsin_A} x\) Fundamental Theorem of Calculus: Second Part

$\blacksquare$