Arcsine in terms of Twice Arctangent

From ProofWiki
Jump to navigation Jump to search

Theorem

$\arcsin x = 2 \map \arctan {\dfrac x {1 + \sqrt {1 - x^2} } }$

where $x$ is a real number with $-1 < x < 1$.


Proof

Let:

$\theta = \arcsin x$

Then by the definition of arcsine:

$x = \sin \theta$

and:

$-\dfrac \pi 2 < \theta < \dfrac \pi 2$


Then:

\(\ds \tan \dfrac \theta 2\) \(=\) \(\ds \dfrac {\sin \theta} {1 + \cos \theta}\) Half Angle Formula for Tangent: Corollary $1$
\(\ds \) \(=\) \(\ds \dfrac {\sin \theta} {1 + \sqrt {1 - \sin^2 \theta} }\) Sum of Squares of Sine and Cosine
\(\ds \) \(=\) \(\ds \dfrac x {1 + \sqrt {1 - x^2} }\) Sum of Squares of Sine and Cosine
\(\ds \leadsto \ \ \) \(\ds \dfrac \theta 2\) \(=\) \(\ds \map \arctan {\dfrac x {1 + \sqrt {1 - x^2} } }\) taking arctangent of both sides
\(\ds \leadsto \ \ \) \(\ds \arcsin x\) \(=\) \(\ds 2 \map \arctan {\dfrac x {1 + \sqrt {1 - x^2} } }\) substituting $\theta \gets \arcsin x$

$\blacksquare$