Sum of Squares of Sine and Cosine
Theorem
- $\cos^2 x + \sin^2 x = 1$
where $\sin$ and $\cos$ are sine and cosine.
Corollary 1
- $\sec^2 x - \tan^2 x = 1 \quad \text {(when $\cos x \ne 0$)}$
Corollary 2
- $\csc^2 x - \cot^2 x = 1 \quad \text {(when $\sin x \ne 0$)}$
Algebraic Proof
\(\ds 1\) | \(=\) | \(\ds \cos 0\) | Cosine of Zero is One | |||||||||||
\(\ds \) | \(=\) | \(\ds \map \cos {x - x}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \cos x \map \cos {-x} - \sin x \map \sin {-x}\) | Cosine of Sum | |||||||||||
\(\ds \) | \(=\) | \(\ds \cos x \cos x - \paren {-\sin x \sin x}\) | Cosine Function is Even and Sine Function is Odd | |||||||||||
\(\ds \) | \(=\) | \(\ds \cos^2 x + \sin^2 x\) |
$\blacksquare$
Warning
Note that we need to start from the algebraic definitions of sine and cosine:
- $\ds \sin x = \sum_{n \mathop = 0}^\infty \paren {-1}^n \frac {x^{2 n + 1} } {\paren {2 n + 1}!} = x - \frac {x^3} {3!} + \frac {x^5} {5!} - \cdots$
- $\ds \cos x = \sum_{n \mathop = 0}^\infty \paren {-1}^n \frac {x^{2 n} } {\paren {2 n}!} = 1 - \frac {x^2} {2!} + \frac {x^4} {4!} - \cdots$
and then use the proofs of the Cosine of Sum that derive directly from these.
Otherwise these proofs are circular.
Geometric Proof
From the trigonometric definitions of sine and cosine:
\(\ds \sin x\) | \(=\) | \(\ds \frac{\text{opposite} } {\text{hypotenuse} }\) | ||||||||||||
\(\ds \cos x\) | \(=\) | \(\ds \frac{\text{adjacent} } {\text{hypotenuse} }\) |
Then:
\(\ds \sin^2 x + \cos^2 x\) | \(=\) | \(\ds \frac{\text{opposite}^2 + \text{adjacent}^2} {\text{hypotenuse}^2}\) | squaring both sides and adding | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac{\text{hypotenuse}^2} {\text{hypotenuse}^2}\) | Pythagoras's Theorem | |||||||||||
\(\ds \) | \(=\) | \(\ds 1\) |
$\blacksquare$
Unit Circle Proof
Let $P = \tuple {x, y}$ be a point on the circumference of a unit circle whose center is at the origin of a cartesian plane.
From Sine of Angle in Cartesian Plane and Cosine of Angle in Cartesian Plane:
- $P = \tuple {\cos \theta, \sin \theta}$
The graph of the unit circle is the locus of:
- $x^2 + y^2 = 1$
as given by Equation of Circle.
Substituting $x = \cos \theta$ and $y = \sin \theta$ yields:
- $\cos^2 \theta + \sin^2 \theta = 1$
$\blacksquare$
Euler's Formula Proof
\(\ds \cos^2 x + \sin^2 x\) | \(=\) | \(\ds \left({\cos x + i \, \sin x}\right) \, \left({\cos x - i \, \sin x}\right)\) | factoring over the complex numbers | |||||||||||
\(\ds \) | \(=\) | \(\ds \left({\cos x + i \, \sin x}\right) \, \left({\cos \left({-x}\right) + i \, \sin \left({-x}\right)}\right)\) | Cosine Function is Even and Sine Function is Odd | |||||||||||
\(\ds \) | \(=\) | \(\ds e^{ix} \, e^{-ix}\) | Euler's Formula | |||||||||||
\(\ds \) | \(=\) | \(\ds 1\) |
$\blacksquare$
Proof using Euler's Identities
\(\ds \cos^2 x + \sin^2 x\) | \(=\) | \(\ds \paren {\frac {e^{i x} + e^{-i x} } 2}^2 + \sin^2 x\) | Euler's Cosine Identity | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\frac {e^{i x} + e^{-i x} } 2}^2 + \paren {\frac {e^{i x} - e^{-i x} } {2 i} }^2\) | Euler's Sine Identity | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\paren {e^{i x} }^2 + 2 e^{-i x} e^{i x} + \paren {e^{-i x} }^2} 4 + \paren {\frac {e^{i x} - e^{-i x} } {2 i} }^2\) | Square of Sum | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\paren {e^{i x} }^2 + 2 e^{-i x} e^{i x} + \paren {e^{-i x} }^2} 4 + \frac {\paren {e^{i x} }^2 - e^{-i x} e^{i x} + \paren {e^{-i x} }^2} {-4}\) | Square of Difference and $i^2 = -1$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {e^{2 i x} + 2 + e^{-2 i x} } 4 + \frac {e^{2 i x} - 2 + e^{-2 i x} } {-4}\) | Exponential of Sum | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {e^{2 i x} + 2 + e^{-2 i x} - e^{2 i x} + 2 - e^{-2 i x} } 4\) | simplifying | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 4 4\) | simplifying | |||||||||||
\(\ds \) | \(=\) | \(\ds 1\) |
$\blacksquare$
Also known as
This result is often referred to as the Pythagorean Identity.
Also see
Historical Note
The identity:
- $\cos^2 x + \sin^2 x = 1$
was discovered and documented by Varahamihira in the 6th century CE.
Sources
- 1953: L. Harwood Clarke: A Note Book in Pure Mathematics ... (next): $\text V$. Trigonometry: Formulae $(1)$
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 5$: Trigonometric Functions: $5.19$
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): cosine
- in which a mistake occurs
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): hyperbolic function
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): sine
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): trigonometric function
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): trigonometric function
- 2008: Ian Stewart: Taming the Infinite ... (previous) ... (next): Chapter $5$: Eternal Triangles: The origins of trigonometry
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): Appendix $12$: Trigonometric formulae
- 2021: Richard Earl and James Nicholson: The Concise Oxford Dictionary of Mathematics (6th ed.) ... (previous) ... (next): Appendix $14$: Trigonometric formulae