Area of Isosceles Triangle in terms of Sides
Jump to navigation
Jump to search
Theorem
Let $\triangle ABC$ be an isosceles triangle whose apex is $A$.
Let $r$ be the length of a leg of $\triangle ABC$.
Let $b$ be the length of the base of $\triangle ABC$.
Then the area $\AA$ of $\triangle ABC$ is given by:
- $\AA = \dfrac b 4 \sqrt {4 r^2 - b^2}$
Proof
Let $h$ be the height of $\triangle ABC$.
\(\ds \AA\) | \(=\) | \(\ds \frac 1 2 b h\) | Area of Triangle in Terms of Side and Altitude | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac b 2 \sqrt {r^2 - \paren {\frac b 2}^2}\) | Pythagoras's Theorem | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac b 2 \sqrt {\frac {4 r^2 - b^2} 4}\) | simplification | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac b 4 \sqrt {4 r^2 - b^2}\) | simplification |
$\blacksquare$