Associative Idempotent Anticommutative
![]() | This article needs to be tidied. Please fix formatting and $\LaTeX$ errors and inconsistencies. It may also need to be brought up to our standard house style. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Tidy}} from the code. |
Theorem
Let $\circ$ be a binary operation on a non-empty set $S$.
Let $\circ$ be associative.
Then $\circ$ is anticommutative if and only if:
- $(1): \quad \circ$ is idempotent
and:
- $(2): \quad \forall a, b \in S: a \circ b \circ a = a$
Proof
Let $\circ$ be an associative operation on $S$.
Necessary Condition
Suppose $\circ$ is anticommutative.
Since $S$ is non-empty, let $a \in S$ be arbitrary.
By definition, $\circ$ is anticommutative implies that:
- $\forall a \in S: a \circ a = a \circ a \iff a = a$
By $\circ$ is a well-defined operation, $a \circ a$ is well-defined.
![]() | The validity of the material on this page is questionable. In particular: The above is incoherent. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by resolving the issues. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Questionable}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
It remains to be shown that $a \circ a \in S$.
Let $a, w \in S$ be arbitrary.
Since $\circ$ is anticommutative, then:
- $\paren {a \circ a} \circ w = w \circ \paren {a \circ a} \iff a \circ a = w$
Thus $a \circ a \in S$.
That is:
- $\forall \paren {a \circ a}, w \in S: \paren {a \circ a} \circ w = w \circ \paren {a \circ a} \iff a \circ a = w$
Let $w = a \in S$.
Then:
- $\forall \paren {a \circ a}, a \in S: \paren {a \circ a} \circ a = a \circ \paren {a \circ a} \iff a \circ a = a$
Hence:
- $\forall a \in S: \paren {a \circ a} \circ a = a \circ \paren {a \circ a} \iff a \circ a = a$
So $\circ$ being associative and anticommutative implies that $\circ$ is idempotent.
Now, it remains to be shown that for any $a, b \in S$, if $\circ$ is associative and anticommutative, then:
- $ a \circ b \circ a = a$.
In particular, it remains to be shown that:
- $a \circ b \circ a \in S$.
By assumption:
- $\forall a, b \in S: a \circ b = b \circ a \iff a = b$
By $\circ$ is a well-defined operation, $a \circ b$ and $b \circ a$ are well-defined.
Let $a, b, x \in S$, then:
- $\paren {a \circ b} \circ x = x \circ \paren {a \circ b} \iff a \circ b = x$
This implies that:
- $\forall \paren {a \circ b}, x \in S: \paren {a \circ b} \circ x = x \circ \paren {a \circ b} \iff a \circ b = x$
Hence there exists $\paren {a \circ b} \in S$ for some $a, b \in S$.
Similarly, let $b, a, y \in S$, then:
- $\paren {b \circ a} \circ y = y \circ \paren {b \circ a} \iff b \circ a = y$
This implies that:
- $\forall \paren {b \circ a}, y \in S: \paren {b \circ a} \circ y = y \circ \paren {b \circ a} \iff b \circ a = y$
Hence there exists $\paren {b \circ a} \in S$ for some $a, b \in S$.
Let $a, b, z \in S$, then:
- $\paren {a \circ b \circ a} \circ z = z \circ \paren {a \circ b \circ a} \iff a \circ b \circ a = z$
Hence there exists $\paren {a \circ b \circ a} \in S$ for some $a, b \in S$.
Hence:
\(\ds \paren {a \circ a} \circ b \circ a\) | \(=\) | \(\ds a \circ b \circ a\) | $\circ$ is idempotent, proved above | |||||||||||
\(\ds \) | \(=\) | \(\ds a \circ b \circ \paren {a \circ a}\) | $\circ$ is idempotent | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds a \circ \paren {a \circ b \circ a}\) | \(=\) | \(\ds \paren {a \circ b \circ a} \circ a\) | $\circ$ is associative | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds a \circ b \circ a\) | \(=\) | \(\ds a\) | $\circ$ is anticommutative | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds a \circ b \circ a\) | \(=\) | \(\ds a\) | by hypothesis |
So $\circ$ being associative and anticommutative implies, via the fact (also proved) that $\circ$ is idempotent, that $a \circ b \circ a = a$.
$\Box$
Sufficient Condition
Now, suppose $\circ$ (which we take to be associative) is idempotent and:
- $\forall a, b \in S: a \circ b \circ a = a$
It remains to be shown that $\circ$ is anticommutative.
Suppose:
- $a \circ b = b \circ a$.
Then:
\(\ds \leadsto \ \ \) | \(\ds a \circ \paren {b \circ a}\) | \(=\) | \(\ds a \circ \paren {a \circ b}\) | by hypothesis: $a \circ b \circ a = a\in S$ | ||||||||||
\(\ds a \circ b \circ a\) | \(=\) | \(\ds \paren {a \circ a} \circ b\) | $\circ$ is associative | |||||||||||
\(\ds \) | \(=\) | \(\ds a \circ b\) | $\circ$ is idempotent | |||||||||||
\(\ds \) | \(=\) | \(\ds a\) | by hypothesis |
Similarly:
\(\ds a \circ b\) | \(=\) | \(\ds b \circ a\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {a \circ b} \circ a\) | \(=\) | \(\ds \paren {b \circ a} \circ a\) | by hypothesis: $a \circ b \circ a \in S$ | ||||||||||
\(\ds a \circ b \circ a\) | \(=\) | \(\ds b \circ \paren {a \circ a}\) | $\circ$ is associative | |||||||||||
\(\ds \) | \(=\) | \(\ds b \circ a\) | $\circ$ is idempotent | |||||||||||
\(\ds \) | \(=\) | \(\ds a\) | by hypothesis |
Also:
\(\ds a \circ b\) | \(=\) | \(\ds b \circ a\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds b \circ \paren {a \circ b}\) | \(=\) | \(\ds b \circ \paren {b \circ a}\) | by hypothesis: $b \circ a \circ b = b \in S$ | ||||||||||
\(\ds b \circ a \circ b\) | \(=\) | \(\ds \paren {b \circ b} \circ a\) | $\circ$ is associative | |||||||||||
\(\ds \) | \(=\) | \(\ds b \circ a\) | $\circ$ is idempotent | |||||||||||
\(\ds \) | \(=\) | \(\ds b\) | by hypothesis |
Then:
\(\ds b \circ a\) | \(=\) | \(\ds a \circ b\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {b \circ a} \circ b\) | \(=\) | \(\ds \paren {a \circ b} \circ b\) | by hypothesis: $b \circ a \circ b = b \in S$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds b \circ a \circ b\) | \(=\) | \(\ds a \circ \paren {b \circ b}\) | $\circ$ is associative | ||||||||||
\(\ds \) | \(=\) | \(\ds a \circ b\) | $\circ$ is idempotent | |||||||||||
\(\ds \) | \(=\) | \(\ds b\) | by hypothesis |
Hence:
\(\ds a\) | \(=\) | \(\ds a \circ b = b\) | ||||||||||||
\(\ds a\) | \(=\) | \(\ds b \circ a = b\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds a\) | \(=\) | \(\ds b\) |
So:
- $(1): \quad \circ$ is idempotent
and:
- $(2): \quad \forall a, b \in S: a \circ b \circ a = a$
together imply that $\circ$ is anticommutative.
$\blacksquare$
Sources
- 1965: Seth Warner: Modern Algebra ... (previous) ... (next): Chapter $\text I$: Algebraic Structures: $\S 2$: Compositions: Exercise $2.17 \ \text{(b)}$