Associator of Associative Algebra is Zero

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {A_R, \oplus}$ be an associative algebra.

Let $\sqbrk {a, b, c}$ denote the associator of $a, b, c \in A_R$.

Then:

$\forall a, b, c \in A_R: \sqbrk {a, b, c} = \mathbf 0_R$


Proof

\(\ds \forall a, b, c \in A_R: \, \) \(\ds a \oplus \paren {b \oplus c}\) \(=\) \(\ds \paren {a \oplus b} \oplus c\) Definition of Associative Algebra
\(\ds \leadsto \ \ \) \(\ds a \oplus \paren {b \oplus c} - \paren {a \oplus b} \oplus c\) \(=\) \(\ds \mathbf 0_R\)

$\blacksquare$


Sources