Asymptotic Expansion for Cosine Integral Function

From ProofWiki
Jump to navigation Jump to search

Theorem

\(\ds \map \Ci x\) \(\sim\) \(\ds \frac {\cos x} x \sum_{n \mathop = 0}^\infty \paren {-1}^n \frac {\paren {2 n + 1}!} {x^{2 n + 1} } - \frac {\sin x} x \sum_{n \mathop = 0}^\infty \paren {-1}^n \frac {\paren {2 n}!} {x^{2 n} }\)
\(\ds \) \(\sim\) \(\ds \frac {\cos x} x \paren {\dfrac 1 x - \dfrac {3!} {x^3} + \dfrac {5!} {x^5} - \cdots} - \frac {\sin x} x \paren {1 - \dfrac {2!} {x^2} + \dfrac {4!} {x^4} - \cdots}\)

where:

$\Ci$ denotes the cosine integral function
$\sim$ denotes asymptotic equivalence as $x \to \infty$.


Proof




Sources