Book:Murray R. Spiegel/Mathematical Handbook of Formulas and Tables/Third Edition
Jump to navigation
Jump to search
Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd Edition)
Published $\text {2009}$, Schaum
- ISBN 0-07-154855-6
Contents
- Preface
Part $\text A$: FORMULAS
- Section $\text I$: Elementary Constants, Products, Formulas
- 1. Greek Alphabet and Special Constants
- 2. Special Products and Factors
- 3. The Binomial Formula and Binomial Coefficients
- 4. Complex Numbers
- 5. Solutions of Algebraic Equations
- 6. Conversion Factors
- Section $\text {II}$: Geometry
- 7. Geometric Formulas
- 8. Formulas from Plane Analytic Geometry
- 9. Special Plane Curves
- 10. Formulas from Solid Analytic Geometry
- 11. Special Moments of Inertia
- Section $\text {III}$: Elementary Transcendental Functions
- 12. Trigonometric Functions
- 13. Exponential and Logarithmic Functions
- 14. Hyperbolic Functions
- Section $\text {IV}$: Calculus
- 15. Derivatives
- 16. Indefinite Integrals
- 17. Tables of Special Indefinite Integrals
- 18. Definite Integrals
- Section $\text V$: Differential Equations and Vector Analysis
- 19. Basic Differential Equations and Solutions
- 20. Formulas from Vector Analysis
- Section $\text {VI}$: Series
- 21. Series of Constants
- 22. Taylor Series
- 23. Bernoulli and Euler Numbers
- 24. Fourier Series
- Section $\text {VII}$: Special Functions and Polynomials
- 25. The Gamma Function
- 26. The Beta Function
- 27. Bessel Functions
- 28. Legendre Functions and Associated Legendre Functions
- 29. Hermite Polynomials
- 30. Laguerre Polynomials and Associated Laguerre Polynomials
- 31. Chebyshev Polynomials
- 32. Hypergeometric Functions
- Section $\text {VIII}$: Laplace and Fourier Transforms
- 33. Laplace Transforms
- 34. Fourier Transforms
- Section $\text {IX}$: Elliptic and Miscellaneous Special Functions
- 35. Elliptic Functions
- 36. Miscellaneous and Riemann Zeta Functions
- Section $\text X$: Inequalities and Infinite Products
- 37. Inequalities
- 38. Infinite Products
- Section $\text {XI}$: Probability and Statistics
- 39. Descriptive Statistics
- 40. Probability
- 41. Random Variables
- Section $\text {XII}$: Numerical Methods
- 42. Interpolation
- 43. Quadrature
- 44. Solution of Nonlinear Equations
- 45. Numerical Methods for Ordinary Differential Equations
- 46. Numerical Methods for Partial Differential Equations
- 47. Iteration Methods for Linear Systems
Part $\text B$: TABLES
- Section $\text I$: Logarithmic, Trigonometric, Exponential Functions
- 1. Four Place Common Logarithms $\log_{10} N$ or $\log N$
- 2. $\operatorname{Sin} x$ ($x$ in degrees and minutes)
- 3. $\operatorname{Cos} x$ ($x$ in degrees and minutes)
- 4. $\operatorname{Tan} x$ ($x$ in degrees and minutes)
- 5. Conversion of Radians to Degrees, Minutes and Seconds or Fractions of Degrees
- 6. Conversion of Degrees, Minutes and Seconds to Radians
- 7. Natural or Napierian Logarithms $\log_e x$ or $\ln x$
- 8. Exponential Functions $e^x$
- 9. Exponential Functions $e^{-x}$
- 10. Exponential, Sine and Cosine Integrals
- Section $\text {II}$: Factorial and Gamma Function, Binomial Coefficients
- 11. Factorial $n$
- 12. Gamma Function
- 13. Binomial coefficients
- Section $\text {III}$: Bessel Functions
- 14. Bessel Functions $\map {J_0} x$
- 15. Bessel Functions $\map {J_1} x$
- 16. Bessel Functions $\map {Y_0} x$
- 17. Bessel Functions $\map {Y_1} x$
- 18. Bessel Functions $\map {I_0} x$
- 19. Bessel Functions $\map {I_1} x$
- 20. Bessel Functions $\map {K_0} x$
- 21. Bessel Functions $\map {K_1} x$
- 22. Bessel Functions $\map {\operatorname{Ber} } x$
- 23. Bessel Functions $\map {\operatorname{Bei} } x$
- 24. Bessel Functions $\map {\operatorname{Ker} } x$
- 25. Bessel Functions $\map {\operatorname{Kei} } x$
- 26. Values for Approximate Zeros of Bessel Functions
- Section $\text {IV}$: Legendre Polynomials
- 27. Legendre Polynomials $\map {P_n} x$
- 28. Legendre Polynomials $\map {P_n} {\cos \theta}$
- Section $\text V$: Elliptic Integrals
- 29. Complete Elliptic Integrals of First and Second Kinds
- 30. Incomplete Elliptic Integrals of the First Kind
- 31. Incomplete Elliptic Integrals of the Second Kind
- Section $\text {VI}$: Financial Tables
- 32. Compound Amount: $\paren {1 + r}^n$
- 33. Present Value of an Amount: $\paren {1 + r}^{-n}$
- 34. Amount of an Annuity: $\dfrac {\paren {1 + r}^n - 1} r$
- 35. Present Value of an Annuity: $\dfrac {1 - \paren {1 + r}^{-n}} r$
- Section $\text {VII}$: Probability and Statistics
- 36. Areas under the Standard Normal Curve
- 37. Ordinates of the Standard Normal Curve
- 38. Percentile Values ($t_p$) for Student's $t$ Distribution
- 39. Percentile Values ($\chi_p^2$ for $\chi^2$ (Chi-Square) Distribution
- 40. $95$th Percentile Values for the $F$ Distribution
- 41. $99$th Percentile Values for the $F$ Distribution
- 42. Random Numbers
- Index of Special Symbols and Notations
- Index
Click here for errata
Further Editions
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables
- 1999: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables (2nd ed.)
Source work progress
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 8$: Formulas from Plane Analytic Geometry: Area of Triangle with Vertices at $\tuple {x_1, y_1}$, $\tuple {x_2, y_2}$, $\tuple {x_3, y_3}$: $8.10.$
- From Next:
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 10$: Formulas from Solid Analytic Geometry: Distance $d$ between Two Points $\map {P_1} {x_1, y_1, z_1}$ and $\map {P_2} {x_2, y_2, z_2}$: $10.1$
- From Next:
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 10$: Formulas from Solid Analytic Geometry: Hyperbolic Paraboloid: $10.31.$
- From Next:
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 12$: Trigonometric Functions: Extensions to Angles Which May be Greater Than $90 \degrees$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 22$: Taylor Series: Binomial Series: $22.8.$