Automorphism Group/Examples/Cyclic Group C3/Proof 2

From ProofWiki
Jump to navigation Jump to search

Example of Automorphism Group

Consider the cyclic group $C_3$, which can be presented as its Cayley table:

$\begin {array} {r|rrr} \struct {\Z_3, +_3} & \eqclass 0 3 & \eqclass 1 3 & \eqclass 2 3 \\ \hline \eqclass 0 3 & \eqclass 0 3 & \eqclass 1 3 & \eqclass 2 3 \\ \eqclass 1 3 & \eqclass 1 3 & \eqclass 2 3 & \eqclass 0 0 \\ \eqclass 2 3 & \eqclass 2 3 & \eqclass 0 3 & \eqclass 1 3 \\ \end {array}$


The automorphism group of $C_3$ is given by:

$\Aut {C_3} = \set {\phi, \theta}$

where $\phi$ and $\theta$ are defined as:

\(\ds \map \phi {\eqclass 0 3}\) \(=\) \(\ds \eqclass 0 3\)
\(\ds \map \phi {\eqclass 1 3}\) \(=\) \(\ds \eqclass 1 3\)
\(\ds \map \phi {\eqclass 2 3}\) \(=\) \(\ds \eqclass 2 3\)


\(\ds \map \theta {\eqclass 0 3}\) \(=\) \(\ds \eqclass 0 3\)
\(\ds \map \theta {\eqclass 1 3}\) \(=\) \(\ds \eqclass 2 3\)
\(\ds \map \theta {\eqclass 2 3}\) \(=\) \(\ds \eqclass 1 3\)


The Cayley table of $\Aut {C_3}$ is then:

$\begin{array}{r|rr}
      & \phi   & \theta \\

\hline \phi & \phi & \theta \\ \theta & \theta & \phi \\ \end{array}$


Proof

This is an example of Order of Automorphism Group of Prime Group:

$\order {\Aut G} = p - 1$

for a group of prime order $p$.

The only group of order $2$ is the cyclic group of order $2$.

The result follows.

$\blacksquare$