# Axiom:Axiomatization of 1-Based Natural Numbers It has been suggested that this page or section be renamed: Hardly elegant One may discuss this suggestion on the talk page.

## Axioms

The following axioms are intended to capture the behaviour of the ($1$-based) natural numbers $\N_{>0}$, the element $1 \in \N_{>0}$, and the operations of addition $+$ and multiplication $\times$ as they pertain to $\N_{>0}$:

 $(\text A)$ $:$ $\ds \exists_1 1 \in \N_{> 0}:$ $\ds a \times 1 = a = 1 \times a$ $(\text B)$ $:$ $\ds \forall a, b \in \N_{> 0}:$ $\ds a \times \paren {b + 1} = \paren {a \times b} + a$ $(\text C)$ $:$ $\ds \forall a, b \in \N_{> 0}:$ $\ds a + \paren {b + 1} = \paren {a + b} + 1$ $(\text D)$ $:$ $\ds \forall a \in \N_{> 0}, a \ne 1:$ $\ds \exists_1 b \in \N_{> 0}: a = b + 1$ $(\text E)$ $:$ $\ds \forall a, b \in \N_{> 0}:$ $\ds$Exactly one of these three holds: $\ds a = b \lor \paren {\exists x \in \N_{> 0}: a + x = b} \lor \paren {\exists y \in \N_{> 0}: a = b + y}$ $(\text F)$ $:$ $\ds \forall A \subseteq \N_{> 0}:$ $\ds \paren {1 \in A \land \paren {z \in A \implies z + 1 \in A} } \implies A = \N_{> 0}$

## Note

The above axiom schema specifies the old-fashioned definition of the natural numbers as:

$\text{The set of natural numbers} = \set {1, 2, 3, \ldots}$

as opposed to the more modern approach which defines them as:

$\text{The set of natural numbers} = \set {0, 1, 2, 3, \ldots}$

In order to eliminate confusion, on $\mathsf{Pr} \infty \mathsf{fWiki}$ the set $\set {1, 2, 3, \ldots}$ will be denoted as $\N_{> 0}$ or $\N_{\ne 0}$ or $\N_{\ge 1}$.

When $\N$ is used, $\N = \set {0, 1, 2, 3, \ldots}$ is to be understood.