Axiom:Axiomatization of 1-Based Natural Numbers
Jump to navigation
Jump to search
It has been suggested that this page be renamed. In particular: Hardly elegant To discuss this page in more detail, feel free to use the talk page. |
Axioms
The following axioms are intended to capture the behaviour of the ($1$-based) natural numbers $\N_{>0}$, the element $1 \in \N_{>0}$, and the operations of addition $+$ and multiplication $\times$ as they pertain to $\N_{>0}$:
\((\text A)\) | $:$ | \(\ds \exists_1 1 \in \N_{> 0}:\) | \(\ds a \times 1 = a = 1 \times a \) | ||||||
\((\text B)\) | $:$ | \(\ds \forall a, b \in \N_{> 0}:\) | \(\ds a \times \paren {b + 1} = \paren {a \times b} + a \) | ||||||
\((\text C)\) | $:$ | \(\ds \forall a, b \in \N_{> 0}:\) | \(\ds a + \paren {b + 1} = \paren {a + b} + 1 \) | ||||||
\((\text D)\) | $:$ | \(\ds \forall a \in \N_{> 0}, a \ne 1:\) | \(\ds \exists_1 b \in \N_{> 0}: a = b + 1 \) | ||||||
\((\text E)\) | $:$ | \(\ds \forall a, b \in \N_{> 0}:\) | \(\ds \)Exactly one of these three holds:\( \) | ||||||
\(\ds a = b \lor \paren {\exists x \in \N_{> 0}: a + x = b} \lor \paren {\exists y \in \N_{> 0}: a = b + y} \) | |||||||||
\((\text F)\) | $:$ | \(\ds \forall A \subseteq \N_{> 0}:\) | \(\ds \paren {1 \in A \land \paren {z \in A \implies z + 1 \in A} } \implies A = \N_{> 0} \) |
Note
This page has been identified as a candidate for refactoring. In particular: put this somewhere useful Until this has been finished, please leave {{Refactor}} in the code.
New contributors: Refactoring is a task which is expected to be undertaken by experienced editors only. Because of the underlying complexity of the work needed, it is recommended that you do not embark on a refactoring task until you have become familiar with the structural nature of pages of $\mathsf{Pr} \infty \mathsf{fWiki}$.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Refactor}} from the code. |
The above axiom schema specifies the old-fashioned definition of the natural numbers as:
- $\text{The set of natural numbers} = \set {1, 2, 3, \ldots}$
as opposed to the more modern approach which defines them as:
- $\text{The set of natural numbers} = \set {0, 1, 2, 3, \ldots}$
In order to eliminate confusion, on $\mathsf{Pr} \infty \mathsf{fWiki}$ the set $\set {1, 2, 3, \ldots}$ will be denoted as $\N_{> 0}$ or $\N_{\ne 0}$ or $\N_{\ge 1}$.
When $\N$ is used, $\N = \set {0, 1, 2, 3, \ldots}$ is to be understood.
Sources
- 1964: W.E. Deskins: Abstract Algebra ... (previous) ... (next): $\S 2.1$: Definition $2.1$