Axiom:Complex Semi-Inner Product Axioms
Jump to navigation
Jump to search
Definition
Let $V$ be a vector space over a complex subfield $\GF$.
Let $\innerprod \cdot \cdot: V \times V \to \GF$ be a mapping.
The mapping $\innerprod \cdot \cdot$ is a complex semi-inner product if and only if $\innerprod \cdot \cdot$ satisfies the following axioms:
\((1)\) | $:$ | Conjugate Symmetry | \(\ds \forall x, y \in V:\) | \(\ds \quad \innerprod x y = \overline {\innerprod y x} \) | |||||
\((2)\) | $:$ | Sesquilinearity | \(\ds \forall x, y, z \in V, \forall a \in \GF:\) | \(\ds \quad \innerprod {a x + y} z = a \innerprod x z + \innerprod y z \) | |||||
\((3)\) | $:$ | Non-Negative Definiteness | \(\ds \forall x \in V:\) | \(\ds \quad \innerprod x x \in \R_{\ge 0} \) |
These criteria are called the (complex) semi-inner product axioms.
Also see
- Axiom:Real Semi-Inner Product Axioms, the semi-inner product axioms over a real subfield
- Definition:Complex Inner Product, a semi-inner product with the additional property of positiveness.