Axiom:Kuratowski Closure Axioms

From ProofWiki
Jump to navigation Jump to search

Definition

The Kuratowski closure axioms are a set of conditions defining a closure operator allowing an alternative axiomatization of topological spaces.


Let $S$ and $T$ be sets.

\((\text K 1)\)   $:$   \(\ds \map \cl \empty = \empty \)      
\((\text K 2)\)   $:$   \(\ds S \subseteq \map \cl S \)      
\((\text K 3)\)   $:$   \(\ds \map \cl {\map \cl S} = \map \cl S \)      
\((\text K 4)\)   $:$   \(\ds \map \cl {S \cup T} = \map \cl S \cup \map \cl T \)      


Also See

Sources