Axiom:Quasiuniformity Axioms
Jump to navigation
Jump to search
Definition
Let $S$ be a set.
The quasiuniformity axioms are the conditions on a set of subsets $\UU$ of the cartesian product $S \times S$ which are satisfied for all elements of $\UU$ in order to make $\UU$ a quasiuniformity:
\((\text U 1)\) | $:$ | \(\ds \forall u \in \UU:\) | \(\ds \Delta_S \subseteq u \) | ||||||
\((\text U 2)\) | $:$ | \(\ds \forall u, v \in \UU:\) | \(\ds u \cap v \in \UU \) | ||||||
\((\text U 3)\) | $:$ | \(\ds \forall u \in \UU:\) | \(\ds u \subseteq v \subseteq S \times S \implies v \in \UU \) | ||||||
\((\text U 4)\) | $:$ | \(\ds \forall u \in \UU:\) | \(\ds \exists v \in \UU: v \circ v \subseteq u \) |
where:
- $\Delta_S$ is the diagonal relation on $S$, that is: $\Delta_S = \set {\tuple {x, x}: x \in S}$
- $\circ$ is defined as:
- $u \circ v := \set {\tuple {x, z}: \exists y \in S: \tuple {x, y} \in v, \tuple {y, z} \in u}$
Also see
- Results about uniformities can be found here.
Sources
- 1978: Lynn Arthur Steen and J. Arthur Seebach, Jr.: Counterexamples in Topology (2nd ed.) ... (previous) ... (next): Part $\text I$: Basic Definitions: Section $5$: Metric Spaces: Uniformities