Axiom:Real Inner Product Axioms

From ProofWiki
Jump to navigation Jump to search

Definition

Let $V$ be a vector space over a real subfield $\GF$.

Let $\innerprod \cdot \cdot: V \times V \to \GF$ be a mapping.


The mapping $\innerprod \cdot \cdot$ is a real inner product if and only if $\innerprod \cdot \cdot$ satisfies the following axioms:

\((1')\)   $:$   Symmetry      \(\ds \forall x, y \in V:\) \(\ds \innerprod x y = \innerprod y x \)      
\((2)\)   $:$   Linearity in first argument      \(\ds \forall x, y \in V, \forall a \in \GF:\) \(\ds \quad \innerprod {a x + y} z = a \innerprod x z + \innerprod y z \)      
\((3)\)   $:$   Non-Negative Definiteness      \(\ds \forall x \in V:\) \(\ds \quad \innerprod x x \in \R_{\ge 0} \)      
\((4)\)   $:$   Positiveness      \(\ds \forall x \in V:\) \(\ds \quad \innerprod x x = 0 \implies x = \mathbf 0_V \)      

These criteria are called the (real) inner product axioms.


Also see