Baer's Criterion
Jump to navigation
Jump to search
Theorem
Let $R$ be a ring with unity.
Let $M$ be a left $R$-module.
Then $M$ is injective if and only if the following condition holds:
- For all left ideals $I$ of $R$ with inclusion map $\iota : I \to R$, and for all $R$-module homomorphisms $f : I \to M$, there exists an $R$-module homomorphism $\tilde f : R \to M$ such that:
- $\tilde f \circ \iota = f$
Proof
![]() | This theorem requires a proof. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by crafting such a proof. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{ProofWanted}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Source of Name
This entry was named for Reinhold Baer.