Category:Module Theory
Jump to navigation
Jump to search
This category contains results about Module Theory.
Definitions specific to this category can be found in Definitions/Module Theory.
Module Theory is the branch of abstract algebra which studies modules.
Subcategories
This category has the following 45 subcategories, out of 45 total.
A
B
C
- Category of Modules (1 P)
- Compatible Module Structures (empty)
D
E
F
- Free Modules (8 P)
- Function Spaces (2 P)
G
- Generators of Modules (4 P)
- Graded Submodules (empty)
L
- Linear Dependence (4 P)
- Linear Ring Actions (empty)
N
- Noetherian Modules (3 P)
P
- Projective Modules (1 P)
Q
R
- Ring is Module over Itself (4 P)
S
- Scalar Addition (empty)
- Scalar Multiplication (9 P)
- Scalars (Abstract Algebra) (empty)
- Subring Module is Module (4 P)
T
- Tensor Algebra (3 P)
U
- Unitary Left Modules (empty)
- Unitary Right Modules (empty)
V
Z
Pages in category "Module Theory"
The following 64 pages are in this category, out of 64 total.
B
C
- Canonical Injection into Cartesian Product of Modules
- Character of Representations over C are Algebraic Integers
- Characterisation of Linearly Independent Set through Free Module Indexed by Set
- Characterisation of Spanning Set through Free Module Indexed by Set
- Correspondence between Abelian Groups and Z-Modules
- Correspondence between Abelian Groups and Z-Modules/Homomorphisms
D
F
I
L
- Left Ideal is Left Module over Ring
- Left Module Does Not Necessarily Induce Right Module over Ring
- Left Module induces Right Module over same Ring iff Actions are Commutative
- Left Module over Commutative Ring induces Bimodule
- Left Module over Commutative Ring induces Right Module
- Left Module over Ring Induces Right Module over Opposite Ring
M
P
R
- Right Ideal is Right Module over Ring
- Right Module Does Not Necessarily Induce Left Module over Ring
- Right Module induces Left Module over same Ring iff Actions are Commutative
- Right Module over Commutative Ring induces Bimodule
- Right Module over Commutative Ring induces Left Module
- Right Module over Ring Induces Left Module over Opposite Ring
- Ring is Bimodule over Ring
- Ring is Left Module over Ring
- Ring is Module over Itself
- Ring is Right Module over Ring
- Ring with Unity is Module over Itself