Basis for Open Ordinal Topology
Jump to navigation
Jump to search
Theorem
Let $\Gamma$ be a limit ordinal.
Let $\hointr 0 \Gamma$ denote the open ordinal space on $\Gamma$.
Consider the set $\BB$ of subsets of $\hointr 0 \Gamma$ of the form:
- $\openint \alpha {\beta + 1} = \hointl \alpha \beta = \set {x \in \hointr 0 \Gamma: \alpha < x < \beta + 1}$
for $\alpha, \beta \in \hointr 0 \Gamma$.
Then $\BB$ forms a basis for $\hointr 0 \Gamma$.
Proof
Sources
- 1978: Lynn Arthur Steen and J. Arthur Seebach, Jr.: Counterexamples in Topology (2nd ed.) ... (previous) ... (next): Part $\text {II}$: Counterexamples: $40 \text { - } 43$. Ordinal Space