Beta Function of Half with Half/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

$\map \Beta {\dfrac 1 2, \dfrac 1 2} = \pi$

where $\Beta$ denotes the Beta function.


Proof

By definition of the Beta function:

$\ds \map \Beta {x, y} := 2 \int_0^{\pi / 2} \paren {\sin \theta}^{2 x - 1} \paren {\cos \theta}^{2 y - 1} \rd \theta$

Thus:

\(\ds \map \Beta {\dfrac 1 2, \dfrac 1 2}\) \(=\) \(\ds 2 \int_0^{\pi / 2} \paren {\sin \theta}^{2 \times \frac 1 2 - 1} \paren {\cos \theta}^{2 \times \frac 1 2 - 1} \rd \theta\)
\(\ds \) \(=\) \(\ds 2 \int_0^{\pi / 2} \paren {\sin \theta}^0 \paren {\cos \theta}^0 \rd \theta\)
\(\ds \) \(=\) \(\ds 2 \int_0^{\pi / 2} \rd \theta\)
\(\ds \) \(=\) \(\ds 2 \bigintlimits \theta 0 {\pi / 2}\)
\(\ds \) \(=\) \(\ds 2 \paren {\pi / 2 - 0}\)
\(\ds \) \(=\) \(\ds \pi\)

$\blacksquare$