Definition:Beta Function/Definition 2
Jump to navigation
Jump to search
Definition
The beta function $\Beta: \C \times \C \to \C$ is defined for $\map \Re x, \map \Re y > 0$ as:
- $\ds \map \Beta {x, y} := 2 \int_0^{\pi / 2} \paren {\sin \theta}^{2 x - 1} \paren {\cos \theta}^{2 y - 1} \rd \theta$
Also see
- Results about the beta function can be found here.
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $17.4$: The Beta Function:Some Important Results