Binomial Theorem/Abel's Generalisation/Proof 1
Jump to navigation
Jump to search
Theorem
- $\ds \paren {x + y}^n = \sum_k \binom n k x \paren {x - k z}^{k - 1} \paren {y + k z}^{n - k}$
Proof
By admitting $y = \paren {x + y} - x$, we have that:
- $\paren {x + y}^n = \paren {x + \paren {x + y} - x}^n$
Expanding the right hand side in powers of $\paren {x + y}$:
\(\ds \) | \(\) | \(\ds \sum_k \binom n k x \paren {x - k z}^{k - 1} \paren {y + k z}^{n - k}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_k \binom n k x \paren {x - k z}^{k - 1} \paren {x + \paren {x + y} + k z}^{n - k}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_k \binom n k x \paren {x - k z}^{k - 1} \sum_j \paren {x + y}^j \paren {-x + k z}^{n - k - j} \binom {n - k} j\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_j \binom n j \paren {x + y})^j \sum_k \binom {n - j} {n - j - k} x \paren {x - k z}^{k - 1} \paren {-x + k z}^{n - k - j}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{j \mathop \le n} \binom n j \paren {x + y}^j 0^{n - j}\) | Abel's Generalisation of Binomial Theorem: Special Case $x + y = 0$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {x + y}^n\) | Binomial Theorem |
$\blacksquare$
This article needs to be linked to other articles. In particular: to the results used above You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by adding these links. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{MissingLinks}} from the code. |
Sources
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.6$: Binomial Coefficients: Exercise $51$