Binomial Theorem/Examples/6th Power of Sum
< Binomial Theorem | Examples
Jump to navigation
Jump to search
Example of Use of Binomial Theorem
- $\paren {x + y}^6 = x^6 + 6 x^5 y + 15 x^4 y^2 + 20 x^3 y^3 + 15 x^2 y^4 + 6 x y^5 + y^6$
Proof
Follows directly from the Binomial Theorem:
- $\ds \forall n \in \Z_{\ge 0}: \paren {x + y}^n = \sum_{k \mathop = 0}^n \binom n k x^{n - k} y^k$
putting $n = 6$.
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 2$: Special Products and Factors: $2.9$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 2$: Special Products and Factors: $2.9.$