Binomial Theorem/Hurwitz's Generalisation
Jump to navigation
Jump to search
Theorem
- $\ds \paren {x + y}^n = \sum x \paren {x + \epsilon_1 z_1 + \cdots + \epsilon_n z_n}^{\epsilon_1 + \cdots + \epsilon_n - 1} \paren {y - \epsilon_1 z_1 - \cdots - \epsilon_n z_n}^{n - \epsilon_1 - \cdots - \epsilon_n}$
where the summation ranges over all $2^n$ choices of $\epsilon_1, \ldots, \epsilon_n = 0$ or $1$ independently.
Proof
Follows from this formula:
- $(1): \quad \ds \sum x \paren {x + \epsilon_1 z_1 + \cdots + \epsilon_n z_n}^{\epsilon_1 + \cdots + \epsilon_n - 1} \paren {y + \paren {1 - \epsilon_1} z_1 - \cdots + \paren {1 - \epsilon_n} z_n}^{n - \epsilon_1 - \cdots - \epsilon_n} = \paren {x + y} \paren {x + y + z_1 + \cdots + z_n}^{n - 1}$
![]() | This theorem requires a proof. In particular: ... somehow You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by crafting such a proof. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{ProofWanted}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Source of Name
This entry was named for Adolf Hurwitz.
Sources
- 1902: A. Hurwitz: Über Abel's Verallgemeinerung der binomischen Formel (Acta Math. Vol. 26: pp. 199 – 203)
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.6$: Binomial Coefficients: Exercise $51$