Bisection of Angle in Cartesian Plane

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\theta$ be the angular coordinate of a point $P$ in a polar coordinate plane.

Let $QOR$ be a straight line that bisects the angle $\theta$.


Then the angular coordinates of $Q$ and $R$ are $\dfrac \theta 2$ and $\pi + \dfrac \theta 2$.


Corollary

If $\theta$ is in quadrant I or quadrant II, then the angular coordinates of $Q$ and $R$ are in quadrant I and quadrant III.

If $\theta$ is in quadrant III or quadrant IV, then the angular coordinates of $Q$ and $R$ are in quadrant II and quadrant IV.


Proof

BisectedAngle.png


Let $A$ be a point on the polar axis.

By definition of bisection, $\angle AOQ = \dfrac \theta 2$.

This is the angular coordinate of $Q$.

$\Box$


Consider the conjugate angle $\map \complement {\angle AOP}$ of $\angle AOP$.

By definition of conjugate angle:

$\map \complement {\angle AOP} = -2 \pi - \theta$

where the negative sign arises from the fact that it is measured clockwise.


Then the angle $\angle AOR$ is half of $\map \complement {\angle AOP}$:

\(\ds \angle AOR\) \(=\) \(\ds -\paren {\frac {2 \pi - \theta} 2}\)
\(\ds \) \(=\) \(\ds -\pi + \frac \theta 2\)


The angular coordinate of point $R$ is the conjugate angle $\map \complement {\angle AOR}$ of $\angle AOR$:

\(\ds \map \complement {\angle AOR}\) \(=\) \(\ds 2 \pi - \paren {-\pi + \frac \theta 2}\)
\(\ds \) \(=\) \(\ds 2 \pi - \pi + \frac \theta 2\)
\(\ds \) \(=\) \(\ds \pi + \frac \theta 2\)

$\blacksquare$