Bonnet's Recursion Formula
Jump to navigation
Jump to search
Theorem
Let $\map {P_n} x$ denote the Legendre polynomial of order $n$.
Bonnet's Recursion Formula states:
- $\paren {n + 1} \map {P_{n + 1} } x = \paren {2 n + 1} x \map {P_n} x - n \map {P_{n - 1} } x$
Proof
From Generating Function for Legendre Polynomials, the generating function for $P_n$ is:
- $(1): \quad \ds \frac 1 {\sqrt {1 - 2 x t + t^2} } = \sum_{n \mathop = 0}^\infty \map {P_n} x t^n$
Differentiating both sides of $(1)$ with respect to $t$:
\(\ds \map {\dfrac \d {\d t} } {\paren {1 - 2 x t + t^2 }^{-1/2} }\) | \(=\) | \(\ds \map {\dfrac \d {\d t} } {\sum_{n \mathop = 0}^\infty \map {P_n} x t^n}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds -\dfrac 1 2 \paren {-2 x + 2 t} \paren {1 - 2 x t + t^2 }^{-3/2}\) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \map {\dfrac \d {\d t} } {\map {P_n} x t^n}\) | Derivative of Power, Chain Rule for Derivatives | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \dfrac {x - t} {\sqrt {1 - 2 x t + t^2} }\) | \(=\) | \(\ds \paren {1 - 2 x t + t^2} \sum_{n \mathop = 1}^\infty n \map {P_n} x t^{n - 1}\) | Derivative of Power and multiplying both sides by $1 - 2 x t + t^2$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {x - t} \sum_{n \mathop = 0}^\infty \map {P_n} x t^n\) | \(=\) | \(\ds \paren {1 - 2 x t + t^2} \sum_{n \mathop = 1}^\infty n \map {P_n} x t^{n - 1}\) | substituting $\ds \sum_{n \mathop = 0}^\infty \map {P_n} x t^n$ for $\dfrac 1 {\sqrt {1 - 2 x t + t^2} }$ from $(1)$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {x - t} \sum_{n \mathop = 0}^\infty \map {P_n} x t^n\) | \(=\) | \(\ds \paren {1 - 2 x t + t^2} \sum_{n \mathop = 0}^\infty \paren {n + 1} \map {P_{n + 1} } x t^n\) | Translation of Index Variable of Summation in right hand side |
Equating coefficients of $t^n$:
\(\ds x \map {P_n} x - \map {P_{n - 1} } x\) | \(=\) | \(\ds \paren {n + 1} \map {P_{n + 1} } x - 2 x n \map {P_n} x + \paren {n - 1} \map {P_{n - 1} } x\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {n + 1} \map {P_{n + 1} } x\) | \(=\) | \(\ds x \map {P_n} x - \map {P_{n - 1} } x + 2 x n \map {P_n} x - \paren {n - 1} \map {P_{n - 1} } x\) | rearranging | ||||||||||
\(\ds \) | \(=\) | \(\ds \paren {2 n + 1} x \map {P_n} x - n \map {P_{n - 1} } x\) | simplifying |
Hence the result.
$\blacksquare$
Also presented as
Bonnet's recursion formula can also be presented in the form:
- $\paren {n + 1} \map {P_{n + 1} } x - \paren {2 n + 1} x \map {P_n} x + n \map {P_{n - 1} } x = 0$
Source of Name
This entry was named for Pierre Ossian Bonnet.
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 25$: Legendre Functions: Recurrence Formulas for Legendre Polynomials: $25.20$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 28$: Legendre and Associated Legendre Functions: Recurrence Formulas for Legendre Polynomials: $28.20.$