Book:John B. Conway/A Course in Functional Analysis/Second Edition

From ProofWiki
Jump to navigation Jump to search

John B. Conway: A Course in Functional Analysis (2nd Edition)

Published $\text {1990}$, Springer-Verlag

ISBN 0-387-97245-5


Subject Matter


Contents

CHAPTER I: Hilbert Spaces
$\S 1.$ Elementary Properties and Examples
$\S 2.$ Orthogonality
$\S 3.$ The Riesz Representation Theorem
$\S 4.$ Orthonormal Sets of Vectors and Bases
$\S 5.$ Isomorphic Hilbert Spaces and the Fourier Transform for the Circle
$\S 6.$ The Direct Sum of Hilbert Spaces
CHAPTER II: Operators on Hilbert Space
$\S 1.$ Elementary Properties and Examples
$\S 2.$ The Adjoint of an Operator
$\S 3.$ Projections and Idempotents; Invariant and Reducing Subspaces
$\S 4.$ Compact Operators
$\S 5.$* The Diagonalization of Compact Self-Adjoint Operators
$\S 6.$* An Application: Sturm-Liouville Systems
$\S 7.$* The Spectral Theorem and Functional Calculus for Compact Normal Operators
$\S 8.$* Unitary Equivalence for Compact Normal Operators
CHAPTER III: Banach Spaces
$\S 1.$ Elementary Properties and Examples
$\S 2.$ Linear Operators on Normed Spaces
$\S 3.$ Finite Dimensional Normed Spaces
$\S 4.$ Quotients and Products of Normed Spaces
$\S 5.$ Linear Functionals
$\S 6.$ The Hahn-Banach Theorem
$\S 7.$* An Application: Banach Limits
$\S 8.$* An Application: Runge's Theorem
$\S 9.$* An Application: Ordered Vector Spaces
$\S 10.$ The Dual of a Quotient Space and a Subspace
$\S 11.$ Reflexive Spaces
$\S 12.$ The Open Mapping and Closed Graph Theorems
$\S 13.$ Complemented Subspaces of a Banach Space
$\S 14.$ The Principle of Uniform Boundedness
CHAPTER IV: Locally Convex Spaces
$\S 1.$ Elementary Properties and Examples
$\S 2.$ Metrizable and Normable Locally Convex Spaces
$\S 3.$ Some Geometric Consequences of the Hahn-Banach Theorem
$\S 4.$* Some Examples of the Dual Space of a Locally Convex Space
$\S 5.$* Inductive Limits and the Space of Distributions
CHAPTER V: Weak Topologies
$\S 1.$ Duality
$\S 2.$ The Dual of a Subspace and a Quotient Space
$\S 3.$ Alaoglu's Theorem
$\S 4.$ Reflexivity Revisited
$\S 5.$ Separability and Metrizability
$\S 6.$* An Application: The Stone-Cech Compactification
$\S 7.$ The Krein-Milman Theorem
$\S 8.$ An Application: The Stone-Weierstrass Theorem
$\S 9.$* The Schauder Fixed Point Theorem
$\S 10.$* The Ryll-Nardzewski Fixed Point Theorem
$\S 11.$* An Application: Haar Measure on a Compact Group
$\S 12.$* The Krein-Smulian Theorem
$\S 13.$* Weak Compactness
CHAPTER VI: Linear Operators on a Banach Space
$\S 1.$ The Adjoint of a Linear Operator
$\S 2.$* The Banach-Stone Theorem
$\S 3.$ Compact Operators
$\S 4.$ Invariant Subspaces
$\S 5.$ Weakly Compact Operators
CHAPTER VII: Banach Algebras and Spectral Theory for Operators on a Banach Space
$\S 1.$ Elementary Properties and Examples
$\S 2.$ Ideals and Quotients
$\S 3.$ The Spectrum
$\S 4.$ The Riesz Functional Calculus
$\S 5.$ Dependence of the Spectrum on the Algebra
$\S 6.$ The Spectrum of a Linear Operator
$\S 7.$ The Spectral Theory of a Compact Operator
$\S 8.$ Abelian Banach Algebras
$\S 9.$* The Group Algebra of a Locally Compact Abelian Group
CHAPTER VIII: $C^*$-Algebras
$\S 1.$ Elementary Properties and Examples
$\S 2.$ Abelian $C^*$-Algebras and the Functional Calculus in $C^*$-Algebras
$\S 3.$ The Positive Elements in a $C^*$-Algebra
$\S 4.$* Ideals and Quotients of $C^*$-Algebras
$\S 5.$* Representations of $C^*$-Algebras and the Gelfand-Naimark-Segal Construction
CHAPTER IX: Normal Operators on Hilbert Space
$\S 1.$ Spectral Measures and Representations of Abelian $C^*$-Algebras
$\S 2.$ The Spectral Theorem
$\S 3.$ Star-Cyclic Normal Operators
$\S 4.$ Some Applications of the Spectral Theorem
$\S 5.$ Topologies on $\map \BB \HH$
$\S 6.$ Commuting Operators
$\S 7.$ Abelian von Neumann Algebras
$\S 8.$ The Functional Calculus for Normal Operators: The Conclusion of the Saga
$\S 9.$ Invariant Subspaces for Normal Operators
$\S 10.$ Multiplicity Theory for Normal Operators: A Complete Set of Unitary Invariants
CHAPTER X: Unbounded Operators
$\S 1.$ Basic Properties and Examples
$\S 2.$ Symmetric and Self-Adjoint Operators
$\S 3.$ The Cayley Transform
$\S 4.$ Unbounded Normal Operators and the Spectral Theorem
$\S 5.$ Stone's Theorem
$\S 6.$ The Fourier Transform and Differentiation
CHAPTER XI: Fredholm Theory
$\S 1.$ The Spectrum Revisited
$\S 2.$ Fredholm Operators
$\S 3.$ The Fredholm Index
$\S 4.$ The Essential Spectrum
$\S 5.$ The Components of $\LL \FF$
$\S 6.$ A Finer Analysis of the Spectrum
APPENDIX A: Preliminaries
$\S 1.$ Linear Algebra
$\S 2.$ Topology
APPENDIX B: The Dual of $L^p(\mu)$
APPENDIX C: The Dual of $C_0(X)$
Bibliography
List of Symbols
Index