Book:John B. Conway/A Course in Functional Analysis/Second Edition
Jump to navigation
Jump to search
John B. Conway: A Course in Functional Analysis (2nd Edition)
Published $\text {1990}$, Springer-Verlag
- ISBN 0-387-97245-5
Subject Matter
Contents
- CHAPTER I: Hilbert Spaces
- $\S 1.$ Elementary Properties and Examples
- $\S 2.$ Orthogonality
- $\S 3.$ The Riesz Representation Theorem
- $\S 4.$ Orthonormal Sets of Vectors and Bases
- $\S 5.$ Isomorphic Hilbert Spaces and the Fourier Transform for the Circle
- $\S 6.$ The Direct Sum of Hilbert Spaces
- CHAPTER II: Operators on Hilbert Space
- $\S 1.$ Elementary Properties and Examples
- $\S 2.$ The Adjoint of an Operator
- $\S 3.$ Projections and Idempotents; Invariant and Reducing Subspaces
- $\S 4.$ Compact Operators
- $\S 5.$* The Diagonalization of Compact Self-Adjoint Operators
- $\S 6.$* An Application: Sturm-Liouville Systems
- $\S 7.$* The Spectral Theorem and Functional Calculus for Compact Normal Operators
- $\S 8.$* Unitary Equivalence for Compact Normal Operators
- CHAPTER III: Banach Spaces
- $\S 1.$ Elementary Properties and Examples
- $\S 2.$ Linear Operators on Normed Spaces
- $\S 3.$ Finite Dimensional Normed Spaces
- $\S 4.$ Quotients and Products of Normed Spaces
- $\S 5.$ Linear Functionals
- $\S 6.$ The Hahn-Banach Theorem
- $\S 7.$* An Application: Banach Limits
- $\S 8.$* An Application: Runge's Theorem
- $\S 9.$* An Application: Ordered Vector Spaces
- $\S 10.$ The Dual of a Quotient Space and a Subspace
- $\S 11.$ Reflexive Spaces
- $\S 12.$ The Open Mapping and Closed Graph Theorems
- $\S 13.$ Complemented Subspaces of a Banach Space
- $\S 14.$ The Principle of Uniform Boundedness
- CHAPTER IV: Locally Convex Spaces
- $\S 1.$ Elementary Properties and Examples
- $\S 2.$ Metrizable and Normable Locally Convex Spaces
- $\S 3.$ Some Geometric Consequences of the Hahn-Banach Theorem
- $\S 4.$* Some Examples of the Dual Space of a Locally Convex Space
- $\S 5.$* Inductive Limits and the Space of Distributions
- CHAPTER V: Weak Topologies
- $\S 1.$ Duality
- $\S 2.$ The Dual of a Subspace and a Quotient Space
- $\S 3.$ Alaoglu's Theorem
- $\S 4.$ Reflexivity Revisited
- $\S 5.$ Separability and Metrizability
- $\S 6.$* An Application: The Stone-Cech Compactification
- $\S 7.$ The Krein-Milman Theorem
- $\S 8.$ An Application: The Stone-Weierstrass Theorem
- $\S 9.$* The Schauder Fixed Point Theorem
- $\S 10.$* The Ryll-Nardzewski Fixed Point Theorem
- $\S 11.$* An Application: Haar Measure on a Compact Group
- $\S 12.$* The Krein-Smulian Theorem
- $\S 13.$* Weak Compactness
- CHAPTER VI: Linear Operators on a Banach Space
- $\S 1.$ The Adjoint of a Linear Operator
- $\S 2.$* The Banach-Stone Theorem
- $\S 3.$ Compact Operators
- $\S 4.$ Invariant Subspaces
- $\S 5.$ Weakly Compact Operators
- CHAPTER VII: Banach Algebras and Spectral Theory for Operators on a Banach Space
- $\S 1.$ Elementary Properties and Examples
- $\S 2.$ Ideals and Quotients
- $\S 3.$ The Spectrum
- $\S 4.$ The Riesz Functional Calculus
- $\S 5.$ Dependence of the Spectrum on the Algebra
- $\S 6.$ The Spectrum of a Linear Operator
- $\S 7.$ The Spectral Theory of a Compact Operator
- $\S 8.$ Abelian Banach Algebras
- $\S 9.$* The Group Algebra of a Locally Compact Abelian Group
- CHAPTER VIII: $C^*$-Algebras
- $\S 1.$ Elementary Properties and Examples
- $\S 2.$ Abelian $C^*$-Algebras and the Functional Calculus in $C^*$-Algebras
- $\S 3.$ The Positive Elements in a $C^*$-Algebra
- $\S 4.$* Ideals and Quotients of $C^*$-Algebras
- $\S 5.$* Representations of $C^*$-Algebras and the Gelfand-Naimark-Segal Construction
- CHAPTER IX: Normal Operators on Hilbert Space
- $\S 1.$ Spectral Measures and Representations of Abelian $C^*$-Algebras
- $\S 2.$ The Spectral Theorem
- $\S 3.$ Star-Cyclic Normal Operators
- $\S 4.$ Some Applications of the Spectral Theorem
- $\S 5.$ Topologies on $\map \BB \HH$
- $\S 6.$ Commuting Operators
- $\S 7.$ Abelian von Neumann Algebras
- $\S 8.$ The Functional Calculus for Normal Operators: The Conclusion of the Saga
- $\S 9.$ Invariant Subspaces for Normal Operators
- $\S 10.$ Multiplicity Theory for Normal Operators: A Complete Set of Unitary Invariants
- CHAPTER X: Unbounded Operators
- $\S 1.$ Basic Properties and Examples
- $\S 2.$ Symmetric and Self-Adjoint Operators
- $\S 3.$ The Cayley Transform
- $\S 4.$ Unbounded Normal Operators and the Spectral Theorem
- $\S 5.$ Stone's Theorem
- $\S 6.$ The Fourier Transform and Differentiation
- CHAPTER XI: Fredholm Theory
- $\S 1.$ The Spectrum Revisited
- $\S 2.$ Fredholm Operators
- $\S 3.$ The Fredholm Index
- $\S 4.$ The Essential Spectrum
- $\S 5.$ The Components of $\LL \FF$
- $\S 6.$ A Finer Analysis of the Spectrum
- APPENDIX A: Preliminaries
- $\S 1.$ Linear Algebra
- $\S 2.$ Topology
- APPENDIX B: The Dual of $L^p(\mu)$
- APPENDIX C: The Dual of $C_0(X)$
- Bibliography
- List of Symbols
- Index