Book:Walter Ledermann/Complex Numbers
Jump to navigation
Jump to search
Walter Ledermann: Complex Numbers
Published $\text {1960}$, Routledge & Kegan Paul
Subject Matter
Contents
- Preface
- 1. Algebraic Theory of Complex Numbers
- 1. Number Systems
- 2. The Algebraic Theory
- 2. Geometrical Representations
- 3. Roots of Unity
- 4. Elementary Functions of a Complex Variable
- 1. Introduction
- 2. Sequences
- 3. Series
- 4. Power Series
- 5. The Functions $e^z, \cos z, \sin z$
- 6. The Logarithm
- Answers to Exercises
- Index
Rating
Speed | 2 - Trundle |
Clarity | 3 - Terse |
Density | 3 - Meaty |
Level | 2 - Hilly |
Scope | 2 - Limited |
Solutions | 3 - Solutions, but no working |
Errata
Argument of $-1 - i$
Chapter $2$: Geometrical Representations: Example $\text{(iv)}$
- $\map \arg {-1 - i} = -\dfrac \pi 4$
Equation relating Points of Parallelogram in Complex Plane
Chapter $2$: Geometrical Representations: Exercise $7$
- The vertices parallelogram $ABVU$ are represented by the complex numbers $a, b, v, u$ respectively. The angle $UAB$ is equal to $\alpha$ and $\cmod {UA} = \lambda \cmod {AB}$. Prove that $u = \paren {1 - q} a + q b$ and $v = -q a + \paren {1 + q} b$, where $q = \lambda e^{i \alpha}$.
Triple Angle Formula for Cosine: $2 \cos 3 \theta + 1$
Chapter $3$: Roots of Unity: Example $6$
- Show that
- $z^6 + z^3 + 1 = \paren {z^2 - 2 z \cos \dfrac {2 \pi} 9 + 1} \paren {z^2 - 2 z \cos \dfrac {4 \pi} 9 + 1} \paren {z^2 - 2 z \cos \dfrac {8 \pi} 9 + 1} \qquad (3.14)$
- and deduce that
- $2 \cos 3 \theta + 1 = \paren {\cos \theta - \cos \dfrac {2 \pi} 9} \paren {\cos \theta - \cos \dfrac {4 \pi} 9} \paren {\cos \theta - \cos \dfrac {8 \pi} 9} \qquad (3.15)$
- Use $(3.13)$ when $n = 9$ and observe that the factor that corresponds to $r = 3$, is $z^2 - 2 z \cos \dfrac {2 \pi} 3 + 1 = z^2 + z + 1$, the remaining three quadratic factors being as on the right hand side of $(3.14)$. This expression is therefore equal to $\paren {z^9 - 1} / \paren {z - 1} \paren {z^2 + z + 1} = \paren {z^9 - 1} / \paren {z^3 - 1} = z^6 + z^3 + 1$, which proves $(3.14)$. Next, divide $(3.14)$ throughout by $z^3$ and then put $z = e^i$. With this value of $z$, $z + z^{-1} = 2 \cos \theta$, $z^3 + z^{-3} = 2 \cos 3 \theta$, and $(3.15)$ is an immediate consequence.
Radius of Convergence of Power Series Expansion for Cosine Function
Chapter $4$: Elementary Functions of a Complex Variable: Section $4$: Power Series: Example $\text{(iii)}$
- The series $C \paren z = 1 - \dfrac {z^2} {2!} + \dfrac {z^4} {4!} - z \dfrac 6 {6!} + \cdots$ and $S \paren z = z - \dfrac {z^3} {3!} + \dfrac {z^5} {5!} - \dfrac {z^7} {7!} + \cdots$ also converge for all $z$, ...