Brouncker's Formula
Jump to navigation
Jump to search
Theorem
- $\dfrac 4 \pi = 1 + \cfrac {1^2} {2 + \cfrac {3^2} {2 + \cfrac {5^2} {2 + \cfrac {7^2} {2 + \cfrac {9^2} {2 + \cdots} } } } }$
Proof
From Continued Fraction for Real Arctangent Function, we have:
- $\arctan x = \cfrac x {1 + \cfrac {x^2} {3 - x^2 + \cfrac {\paren {3 x}^2} {5 - 3 x^2 + \cfrac {\paren {5 x}^2} {7 - 5 x^2 + \cfrac {\paren {7 x}^2} {\ddots } } } } }$
From Arctangent of One, we have:
- $\map \arctan 1 = \dfrac \pi 4$
Therefore:
\(\ds \frac \pi 4\) | \(=\) | \(\ds \map \arctan 1\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \cfrac 1 {1 + \cfrac 1 {3 - 1 + \cfrac {3^2} {5 - 3 + \cfrac {5^2} {7 - 5 + \cfrac {7^2} {\ddots } } } } }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \cfrac 1 {1 + \cfrac 1 {2+ \cfrac {3^2} {2 + \cfrac {5^2} {2 + \cfrac {7^2} {\ddots } } } } }\) |
Taking the reciprocal of both sides, we obtain:
- $\dfrac 4 \pi = 1 + \cfrac {1^2} {2 + \cfrac {3^2} {2 + \cfrac {5^2} {2 + \cfrac {7^2} {2 + \cfrac {9^2} {2 + \cdots} } } } }$
$\blacksquare$
Also presented as
Brouncker's Formula can also be presented as:
- $\dfrac \pi 4 = \dfrac 1 {1 + \cfrac {1^2} {2 + \cfrac {3^2} {2 + \cfrac {5^2} {2 + \cfrac {7^2} {2 + \cfrac {9^2} {2 + \cdots} } } } } }$
Source of Name
This entry was named for William Brouncker.
Sources
- 1992: George F. Simmons: Calculus Gems ... (previous) ... (next): Chapter $\text {A}.21$: Euler ($\text {1707}$ – $\text {1783}$)
- 1992: George F. Simmons: Calculus Gems ... (previous) ... (next): Chapter $\text {B}.12$: Wallis's Product: Footnote $1$
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): Brouncker, William, Viscount (1620-85)
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): Brouncker, William, Viscount (1620-85)