Cantor Space satisfies all Separation Axioms

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $T = \struct {\mathcal C, \tau_d}$ be the Cantor space.


Then $T$ satisfies all the separation axioms.


Proof

We have that the Cantor space is a metric subspace of the real number space $\R$, and hence a metric space.

The result follows from Metric Space fulfils all Separation Axioms.

$\blacksquare$


Sources