Cardinality of Cartesian Product of Finite Sets/General Result

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\ds \prod_{k \mathop = 1}^n S_k$ be the cartesian product of a (finite) sequence of sets $\sequence {S_n}$.


Then:

$\ds \card {\prod_{k \mathop = 1}^n S_k} = \prod_{k \mathop = 1}^n \card {S_k}$


This can also be written:

$\card {S_1 \times S_2 \times \ldots \times S_n} = \card {S_1} \times \card {S_2} \times \ldots \times \card {S_n}$


Corollary

Let $S$ be a finite set.

Let $S^n$ be a cartesian space on $S$.


Then:

$\card {S^n} = \card S^n$


Proof