# Category:Axiom of Unions

Jump to navigation
Jump to search

This category contains results about **Axiom of Unions**.

### Set Theory

For every set of sets $A$, there exists a set $x$ (the **union set**) that contains all and only those elements that belong to at least one of the sets in the $A$:

- $\forall A: \exists x: \forall y: \paren {y \in x \iff \exists z: \paren {z \in A \land y \in z} }$

### Class Theory

Let $x$ be a set (of sets).

## Subcategories

This category has only the following subcategory.

## Pages in category "Axiom of Unions"

This category contains only the following page.