Category:Definitions/Conjugacy Action
Jump to navigation
Jump to search
This category contains definitions related to Conjugacy Action.
Related results can be found in Category:Conjugacy Action.
Let $\struct {G, \circ}$ be a group.
The (left) conjugacy action of $G$ is the left group action $* : G \times G \to G$ defined as:
- $\forall g, x \in G: g * x = g \circ x \circ g^{-1}$
The right conjugacy action of $G$ is the right group action $* : G \times G \to G$ defined as:
- $\forall x, g \in G: x * g = g^{-1} \circ x \circ g$
Pages in category "Definitions/Conjugacy Action"
The following 6 pages are in this category, out of 6 total.