Category:Conjugacy Action
Jump to navigation
Jump to search
This category contains results about Conjugacy Action.
Definitions specific to this category can be found in Definitions/Conjugacy Action.
Let $\struct {G, \circ}$ be a group.
The (left) conjugacy action of $G$ is the left group action $* : G \times G \to G$ defined as:
- $\forall g, x \in G: g * x = g \circ x \circ g^{-1}$
The right conjugacy action of $G$ is the right group action $* : G \times G \to G$ defined as:
- $\forall x, g \in G: x * g = g^{-1} \circ x \circ g$
Pages in category "Conjugacy Action"
The following 12 pages are in this category, out of 12 total.
C
- Center of Group is Kernel of Conjugacy Action
- Conjugacy Action is Group Action
- Conjugacy Action is not Transitive
- Conjugacy Action on Abelian Group is Trivial
- Conjugacy Action on Group Elements is Group Action
- Conjugacy Action on Identity
- Conjugacy Action on Subgroups is Group Action
- Conjugacy Action on Subsets is Group Action