Category:Definitions/Convergence

From ProofWiki
Jump to navigation Jump to search

This category contains definitions related to Convergence.
Related results can be found in Category:Convergence.


Let $T = \left({S, \tau}\right)$ be a topological space.

Let $\left \langle {x_n} \right \rangle_{n \in \N}$ be an infinite sequence in $S$.


Then $\left \langle {x_n} \right \rangle$ converges to the limit $\alpha \in S$ if and only if:

$\forall U \in \tau: \alpha \in U \implies \left({\exists N \in \R_{>0}: \forall n \in \N: n > N \implies x_n \in U}\right)$

Subcategories

This category has the following 6 subcategories, out of 6 total.

Pages in category "Definitions/Convergence"

The following 62 pages are in this category, out of 62 total.

C