Category:Definitions/Convergent Sequences in Test Function Space

From ProofWiki
Jump to navigation Jump to search

This category contains definitions related to Convergent Sequences in Test Function Space.
Related results can be found in Category:Convergent Sequences in Test Function Space.

Let $\map \DD {\R^d}$ be the test function space with the compact support $K \subseteq \R^d$.

Let $\sequence {\phi_n}_{n \mathop \in \N}$ be a sequence in $\map \DD {\R^d}$.

Let $\phi \in \map \DD {\R^d}$ be a test function.

Let $D^k := \dfrac {\partial^{k_1 + k_2 + \ldots + k_d}} {\partial x_1^{k_1} \partial x_2^{k_2} \ldots \partial x_d^{k_d} }$ be a partial differential operator with the multiindex $k = \tuple {k_1, k_2, \ldots, k_d}$.


$\forall n \in \N : \forall x \in \R^d \setminus K : \map {\phi_n} x = 0$

Suppose $\sequence {\phi_n}_{n \mathop \in \N}$ converges uniformly to $\phi$.

Suppose that for every multiindex $k$ the sequence $\sequence {D^k \phi_n}_{n \mathop \in \N}$ converges uniformly to $D^k \phi$.

Then the sequence $\sequence {\phi_n}_{n \mathop \in \N}$ converges to $\phi$ in $\map \DD {\R^d}$.

This can be denoted:

$\phi_n \stackrel \DD {\longrightarrow} \phi$

Pages in category "Definitions/Convergent Sequences in Test Function Space"

This category contains only the following page.