# Definition:Real Sequence

## Definition

A real sequence is a sequence (usually infinite) whose codomain is the set of real numbers $\R$.

## Examples

### Example: $\sequence {\paren {-1}^n}$

The first few terms of the real sequence:

$S = \sequence {\paren {-1}^n}_{n \mathop \ge 1}$

are:

$-1, +1, -1, +1, \dotsc$

$S$ is not monotone, either increasing or decreasing.

### Example: $\sequence {n^{-1} }$

The first few terms of the real sequence:

$S = \sequence {n^{-1} }_{n \mathop \ge 1}$

are:

$1, \dfrac 1 2, \dfrac 1 3, \dfrac 1 4, \dotsc$

$S$ is strictly decreasing.

### Example: $\sequence 1$

The first few terms of the real sequence:

$S = \sequence 1_{n \mathop \ge 1}$

are:

$1, 1, 1, 1, \dotsc$

$S$ is both increasing and decreasing.

### Example: $\sequence {2^n}$

The first few terms of the real sequence:

$S = \sequence {2^n}_{n \mathop \ge 1}$

are:

$2, 4, 8, 16, \dotsc$

$S$ is strictly increasing.

### Example: $\sequence {\dfrac 1 2 \paren {x_{n - 1} + \dfrac 2 {x_{n - 1} } } }_{n \mathop \ge 2}$

The first few terms of the real sequence:

$S = \sequence {a_n}_{n \mathop \ge 1}$

defined as:

$a_n = \begin {cases} 2 & : n = 1 \\ \dfrac 1 2 \paren {x_{n - 1} + \dfrac 2 {x_{n - 1} } } & : n > 1 \end {cases}$

are:

$2, \dfrac 3 2, \dfrac {17} {12}, \dfrac {577} {408}, \dotsc$