# Category:Definitions/Distributive Lattices

This category contains definitions related to Distributive Lattices.
Related results can be found in Category:Distributive Lattices.

Let $\left({S, \vee, \wedge, \preceq}\right)$ be a lattice.

Then $\left({S, \vee, \wedge, \preceq}\right)$ is distributive if and only if one (hence all) of the following equivalent statements holds:

 $(1)$ $:$ $\displaystyle \forall x, y, z \in S:$ $\displaystyle x \wedge \left({y \vee z}\right) = \left({x \wedge y}\right) \vee \left({x \wedge z}\right)$ $(1')$ $:$ $\displaystyle \forall x, y, z \in S:$ $\displaystyle \left({x \vee y}\right) \wedge z = \left({x \wedge z}\right) \vee \left({y \wedge z}\right)$ $(2)$ $:$ $\displaystyle \forall x, y, z \in S:$ $\displaystyle x \vee \left({y \wedge z}\right) = \left({x \vee y}\right) \wedge \left({x \vee z}\right)$ $(2')$ $:$ $\displaystyle \forall x, y, z \in S:$ $\displaystyle \left({x \wedge y}\right) \vee z = \left({x \vee z}\right) \wedge \left({y \vee z}\right)$

## Subcategories

This category has only the following subcategory.

## Pages in category "Definitions/Distributive Lattices"

This category contains only the following page.