Definition:Distributive Lattice
Jump to navigation
Jump to search
Definition
Let $\struct {S, \vee, \wedge, \preceq}$ be a lattice.
Definition 1
Then $\struct {S, \vee, \wedge, \preceq}$ is distributive if and only if $\struct {S, \vee, \wedge, \preceq}$ satisfies one of the distributive lattice axioms:
\((1)\) | $:$ | \(\ds \forall x, y, z \in S:\) | \(\ds x \wedge \paren {y \vee z} = \paren {x \wedge y} \vee \paren {x \wedge z} \) | ||||||
\((1')\) | $:$ | \(\ds \forall x, y, z \in S:\) | \(\ds \paren {x \vee y} \wedge z = \paren {x \wedge z} \vee \paren {y \wedge z} \) | ||||||
\((2)\) | $:$ | \(\ds \forall x, y, z \in S:\) | \(\ds x \vee \paren {y \wedge z} = \paren {x \vee y} \wedge \paren {x \vee z} \) | ||||||
\((2')\) | $:$ | \(\ds \forall x, y, z \in S:\) | \(\ds \paren {x \wedge y} \vee z = \paren {x \vee z} \wedge \paren {y \vee z} \) |
Definition 2
Then $\struct {S, \vee, \wedge, \preceq}$ is distributive if and only if $\struct {S, \vee, \wedge, \preceq}$ satisfies all of the distributive lattice axioms:
\((1)\) | $:$ | \(\ds \forall x, y, z \in S:\) | \(\ds x \wedge \paren {y \vee z} = \paren {x \wedge y} \vee \paren {x \wedge z} \) | ||||||
\((1')\) | $:$ | \(\ds \forall x, y, z \in S:\) | \(\ds \paren {x \vee y} \wedge z = \paren {x \wedge z} \vee \paren {y \wedge z} \) | ||||||
\((2)\) | $:$ | \(\ds \forall x, y, z \in S:\) | \(\ds x \vee \paren {y \wedge z} = \paren {x \vee y} \wedge \paren {x \vee z} \) | ||||||
\((2')\) | $:$ | \(\ds \forall x, y, z \in S:\) | \(\ds \paren {x \wedge y} \vee z = \paren {x \vee z} \wedge \paren {y \vee z} \) |
That these statements are in fact equivalent is shown on Equivalence of Definitions of Distributive Lattice.
Hence, $\struct {S, \vee, \wedge, \preceq}$ is distributive if and only if $\wedge$ and $\vee$ distribute over each other.
Also see
- Results about distributive lattices can be found here.