# Category:Definitions/Elliptic Integrals

Jump to navigation
Jump to search

This category contains definitions related to Elliptic Integrals.

Related results can be found in Category:Elliptic Integrals.

An **elliptic integral** is an integral in the form:

- $\ds \int_0^x \map R {t, \sqrt {\map P t} } \rd t$

where:

- $\map P t$ is a polynomial of degree $3$ or $4$
- $\map R {t, \sqrt {\map P t} }$ is a rational function of $t$ and $\sqrt {\map P t}$.

## Subcategories

This category has the following 11 subcategories, out of 11 total.

### C

### E

## Pages in category "Definitions/Elliptic Integrals"

The following 18 pages are in this category, out of 18 total.

### C

### E

- Definition:Elliptic Integral
- Definition:Elliptic Integral of the First Kind
- Definition:Elliptic Integral of the First Kind/Complete
- Definition:Elliptic Integral of the First Kind/Incomplete
- Definition:Elliptic Integral of the Second Kind
- Definition:Elliptic Integral of the Second Kind/Complete
- Definition:Elliptic Integral of the Second Kind/Incomplete
- Definition:Elliptic Integral of the Third Kind
- Definition:Elliptic Integral of the Third Kind/Complete
- Definition:Elliptic Integral of the Third Kind/Incomplete