# Category:Definitions/Fourier Series

This category contains definitions related to Fourier Series.
Related results can be found in Category:Fourier Series.

### Formulation 1

Let $\alpha \in \R$ be a real number.

Let $\lambda \in \R_{>0}$ be a strictly positive real number.

Let $f: \R \to \R$ be a function such that $\displaystyle \int_\alpha^{\alpha + 2 \lambda} \map f x \rd x$ converges absolutely.

Let:

 $\displaystyle a_n$ $=$ $\displaystyle \dfrac 1 \lambda \int_\alpha^{\alpha + 2 \lambda} \map f x \cos \frac {n \pi x} \lambda \rd x$ $\displaystyle b_n$ $=$ $\displaystyle \dfrac 1 \lambda \int_\alpha^{\alpha + 2 \lambda} \map f x \sin \frac {n \pi x} \lambda \rd x$

Then:

$\displaystyle \frac {a_0} 2 + \sum_{n \mathop = 1}^\infty \paren {a_n \cos \frac {n \pi x} \lambda + b_n \sin \frac {n \pi x} \lambda}$

is the Fourier Series for $f$.

### Formulation 2

Let $a, b \in \R$ be real numbers.

Let $f: \R \to \R$ be a function such that $\displaystyle \int_a^b \map f x \rd x$ converges absolutely.

Let:

 $\displaystyle A_m$ $=$ $\displaystyle \dfrac 2 {b - a} \int_a^b \map f x \cos \frac {2 m \pi \paren {x - a} } {b - a} \rd x$ $\displaystyle B_m$ $=$ $\displaystyle \dfrac 2 {b - a} \int_a^b \map f x \sin \frac {2 m \pi \paren {x - a} } {b - a} \rd x$

Then:

$\displaystyle \frac {A_0} 2 + \sum_{m \mathop = 1}^\infty \paren {A_m \cos \frac {2 m \pi \paren {x - a} } {b - a} + B_m \sin \frac {2 m \pi \paren {x - a} } {b - a} }$

is the Fourier Series for $f$.

## Subcategories

This category has the following 2 subcategories, out of 2 total.

## Pages in category "Definitions/Fourier Series"

The following 12 pages are in this category, out of 12 total.