Category:Definitions/Linear Combination of Subsets of Vector Spaces

From ProofWiki
Jump to navigation Jump to search

This category contains definitions related to Linear Combination of Subsets of Vector Spaces.
Related results can be found in Category:Linear Combination of Subsets of Vector Spaces.


Let $K$ be a field.

Let $X$ be a vector space over $K$.

Dilation

Let $E$ be a subset of $X$.

Let $\lambda \in K$.


The dilation of $E$ by $\lambda$ is defined and written as:

$\lambda E := \set {\lambda x : x \in E}$

where $\lambda x$ is the scalar product of $x$ by $\lambda$.


Binary Case

Let $A$ and $B$ be subsets of $X$.

Let $\lambda, \mu \in K$.


We define the linear combination $\lambda A + \mu B$ by:

$\lambda A + \mu B = \set {\lambda a + \mu b : a \in A, \, b \in B}$


Finite Case

Let $n \in \N$.

Let $E_1, E_2, \ldots, E_n$ be subsets of $X$ and $\lambda_1, \lambda_2, \ldots, \lambda_n \in K$.


We define the linear combination $\ds \sum_{i \mathop = 1}^n \lambda_i E_i$ by:

$\ds \sum_{i \mathop = 1}^n \lambda_i E_i = \set {\sum_{i \mathop = 1}^n \lambda_i x_i : x_i \in E_i \text { for each } i \in \set {1, 2, \ldots, n} }$


General Case

Let $I$ be an indexing set.

For each $\alpha \in I$, let $E_\alpha$ be a subset of $X$ and $\lambda_\alpha \in K$.


We define the linear combination $\ds \sum_{\alpha \mathop \in I} \lambda_\alpha E_\alpha$ by:

$\ds \sum_{\alpha \mathop \in I} \lambda_\alpha E_\alpha = \set {\sum_{i \in F} \lambda_i x_i : F \text { is a finite subset of } I, \, x_i \in E_i \text { for each } i \in I}$