Category:Definitions/Linear Combinations

From ProofWiki
Jump to navigation Jump to search

This category contains definitions related to Linear Combinations.
Related results can be found in Category:Linear Combinations.

Let $G$ be an $R$-module.

Let $\left \langle {a_n} \right \rangle := \left \langle {a_j} \right \rangle_{1 \mathop \le j \mathop \le n}$ be a sequence of elements of $G$ of length $n$.

An element $b \in G$ is a linear combination of $\left \langle {a_n} \right \rangle$ if and only if:

$\displaystyle \exists \left \langle {\lambda_n} \right \rangle \subseteq R: b = \sum_{k \mathop = 1}^n \lambda_k a_k$

Pages in category "Definitions/Linear Combinations"

This category contains only the following page.